The impact of overfishing and what you can do about it

The impact of overfishing and what you can do about it: Explained by Ocean Generation.

Fish is one of the most important food sources on the planet with more than 3.3 billion people relying on it as an important part of their diet.

Fishing is an ancient practice first thought to emerge 40,000 years ago, and for many people, it is central to their culture and way of life.  

However, with our population on the rise and the demand constantly increasing, pressure from commercial fleets is causing fishing to become a problem. 

Fisheries ideally harvest the Maximum Sustainable Yield (MSY), which is the most that can be continually extracted from a population without causing it to decline.

However, more and more of our wild fish stocks are being harvested at a rate faster than the fish populations can naturally regenerate. This is known as overfishing. Advancements in modern technology have exacerbated this by allowing modern fleets to track, target and process huge amounts of seafood.

According to the 2024 FAO report, 37.7% of global fish stocks are fished at unsustainable levels.

However, a recent study of 230 fisheries has revealed that the computer models used to set catch limits often overestimate the size of fish populations. This new research suggests that 85% more fish populations have collapsed than is recognised by the FAO estimate.  

This high level of uncertainty when counting fish stocks poses a greater risk of overfishing and highlights the need for extra precautions to be taken.

37.7 percent of global fish stocks are fished at unsustainable levels. Posted by Ocean Generation.

Fishing in the open Ocean

Countries are allowed to exploit Ocean regions within 200 nautical miles of their coast, called the Economic Exclusion Zone (EEZ). Beyond these areas is what’s known as the high seas: 60% of our Ocean which lies beyond national jurisdiction.

The risk of overfishing is high here, as there’s great difficulty regulating such a huge expanse of Ocean that belongs to no one. 

One of the principles of the high seas is the freedom for any state to have passage and engage in fishing.

However, it’s companies that rule these regions, not countries.  

The combined impact of illegal fishing, and legal fishing that fails to follow scientific advice has led to 65% of straddling (fish that migrate between the high seas and EEZs) and high seas fish stocks to become overfished and for species richness to decline. 

The challenges of regulating the Ocean and fisheries lead to the damage of one of our most important resources.  

Threats such as over-exploitation, destructive fishing methods, and bycatch endanger the health of our Ocean and Ocean biodiversity. Therefore, there’s an immense need for change.  

We need to improve the sustainability of fisheries

How can we make the fishing industry more sustainable?  

Improving the sustainability of fisheries can be done in many ways. Just to name a few: increased regulation on catches and fishing gear, more legislative protection on different areas or cooperation between nations.

One important way is to influence the market and demand sustainability, which can be achieved through consumer action. 

When you step into your local market, opting for sustainable seafood helps to place pressure on suppliers and drives the industry to improve – as it all comes down to consumer demand. 

So, what can I do as a consumer? 

1. Check the certification. 

The Marine Stewardship Council (MSC) completes an assessment of a fishing operator. They look at the sustainability of their fishing, minimisation of environmental impact and how effective their management is.

Sustainable fisheries will be awarded an MSC blue badge, which appears on the packaging of their fish in store. It’s an easy way to identify sustainably caught fish while shopping. The MSC blue label is found on more than 25,000 seafood products all over the world.  

However, it’s worth noting that while the MSC blue badge is the world’s most widely used certification programme for wild fisheries, it’s not without its limitations.  

An independent review by ‘On the Hook’ in 2023 argued that the certification process is insufficient as an indicator of sustainable fishing and doesn’t meet consumer and market expectations.  

Nevertheless, if consumers favour MSC approved seafood whenever possible, this will encourage fisheries to improve their sustainability and meet standards – as it’s currently the best sustainability certification we have. 

Opting for sustainable seafood helps the industry to improve. Posted by Ocean Generation

2. Educate yourself on your options. 

Another way to direct your decision to the most Ocean-friendly option is through education.  

The Marine Conservation Society has a Good Fish Guide, designed to have a traffic light system to represent the environmental impact of your food. It uses scientific advice on the species and how and where it was caught to help inform the consumer on the best possible choice. The guide can be downloaded onto a phone and therefore accessed at any time! 

Similar resources such as  Seafood Watch and GoodFish assess Canadian and U.S markets and Australian markets respectively, who will also help you navigate the most sustainable choices. 

3. Choose your supplier. 

Rather than asking consumers to make the effort, some retailers will make the choice for them, and only stock sustainably produced goods.   

For example, in the UK, M&S has worked with the WWF since 2010, focusing on their supply chains and ensuring traceability and sustainability in their seafood products. Sainsbury’s won both the MSC and ASC (Aquaculture Sustainability Council) awards in 2023, celebrating their achievements in sustainable fishing and responsible aquaculture.

So, if possible, try to consider buying seafood from retailers such as these, as more hassle-free way of making more fish friendly decisions.  

The management of our Ocean resources is vital in allowing them to provide for us in the future. For those who choose to, fish is a favourite, but it will taste much better for having made it to your plate in the most sustainable way, minimising the harm to our Ocean.  

What can I do to make the fishing industry more sustainable: Explained by Ocean Generation

What can Antarctic ice cores tell us about the history of our climate? 

Subscribe

Monthly: Impact in your inbox.

OceanGeneration-Join

Why do marine animals migrate: Everything you need to know  

Migration across the Ocean is such an extraordinary phenomenon that scientists today are still trying to discover how and why it’s done. 

  • How does a turtle find the same exact beach where it hatched after an epic journey across the Ocean? 
  • How do gray and humpback whales navigate record-breaking migrations: 14,000 miles of deep blue sea over 172 days? 
  •  Why do sardines, whales, turtles, hammerheads, great whites, manta rays and all manner of smaller creatures undertake these incredible journeys across our seas? 

Why do marine animals migrate across the open Ocean? 

Crossing an entire Ocean is extremely tiring. You could get lost or caught in a storm and you’re exposed to various risks along the way, so why do it? 

Migration comes down to a need for a resource that an animal doesn’t have in its current environment. They’re often seasonal, long-distance movements in search of food, mates, habitat or to escape predation.

Long journeys across the Ocean come with many challenges for migrants. Posted by Ocean Generation, leaders in Ocean education

Food: One of the biggest reasons for migration. 

Baleen whales, like humpbacks and gray whales, will migrate to northern latitudes during the spring and summer to feed in cold arctic waters, rich in krill and shrimp like crustacea. The long, tiresome journey from the south is made worthwhile for the feast of food that awaits them there.  

Turtles also make their way north, with species like leatherbacks spotted in the waters off Canada, Alaska or Nova Scotia. Leatherbacks are some of the most highly migratory animals on Earth, the longest recorded journey being 12,744 miles from Indonesia to Oregon, USA.

Here during the summer months, there is an increasing abundance of a turtle’s favourite food: jellyfish.

But of course, the food can move too.

Fish are one of the most important sources of food on Earth, preyed upon by numerous different animals, including humans. The KwaZulu-Natal sardine run, also known as the “greatest shoal on Earth,” is a mass migration of South African sardines to the sub-tropical waters of the Indian Ocean.  

Sardine run is a mass migration of South African sardines in the Ocean
Image credit: Mark van Coller/Solent News

Estimated to rival Africa’s wildebeest migration as being the largest biomass migration on Earth, this shoal becomes a ‘moveable feast’ for opportunistic predators like sharks, dolphins, gannets, seals and whales.  

Whales also migrate to find a mate.

Whales, like humpback and gray whales, feed in cold arctic and sub-arctic waters but that’s not a suitable place to find a mate and give birth to their offspring. They could breed here but there are serious risks to the mothers and their calves with the cold water and predation by animals like orcas. 

Instead they move from north to south during the winter months, giving birth to their young in shallow, warm waters such as lagoons. Popular destinations include Baja California, Mexico, Hawaii and Japan.  

Frodo the humpback whale, named after the Lord of the Rings character, underwent his record-breaking adventure to find a mate from the Mariana islands to Mexico covering around 7,000 miles. Check out his journey on Happywhale

Whales migrate thousands of miles across the Ocean. Posted by Ocean Generation
Map of Frodo’s travels from Happywhale.com

Humpbacks will often migrate the same routes they were guided on by their mothers. Frodo’s unusually long journey may be relic behaviour of the whaling industry, where depleted numbers require males to travel further in search of a mate.  

Turtles will return to the exact same beach where they hatched to lay their eggs, known as natal homing. Most turtle species spend most of their time in the open Ocean, widely dispersed across the globe.  

But how do they know where they are and where they’re going? 

Turtles show remarkable navigation skills with pinpoint accuracy using a combination of external cues to calculate their position and route. When they are near the site of their hatching, turtles may use visual cues such as the incline of the beach or the smell of the water or air.  

However, in deeper water turtles must resort to other methods to find their way home.  Loggerhead, green and leatherback turtles have all demonstrated the use of a ‘magnetic map sense’ like other long-distance migrants such as bird and butterflies.  

Along a coastline, the inclination and intensity of the magnetic field will vary, giving rise to a unique magnetic signature at a precise location. Scientists suggest that hatchlings imprint on this unique magnetic signature and use it to navigate back across the entire Ocean years later.  

Sea turtles have remarkable navigation skills to migrate across the Ocean

Long journeys come with obstacles that Ocean migrants must face.  

Our Ocean is becoming an increasingly treacherous place for its inhabitants, with threats from entanglement, ship strike, lack of jurisdictional protection and climate change. 

As these migrants make their way along vast journeys, they tend to cross paths with one of the most dominant and widely distributed animals on Earth: people.  

Many important migratory routes for whales and other surface-dwelling animals like turtles and sharks, converge with areas of heavy maritime traffic. This cross over can lead to ship strike, which is harmful if not fatal to an animal.  

Species like the endangered North Atlantic Wright whale are particularly vulnerable as their habitat and migration routes are close to major ports and shipping lanes. There were 37 whales were reported injured in this region between 2010 and 2014 and that is likely to be an underestimate. 

Furthermore, about 640,000 tonnes of discarded fishing gear, known as ‘ghost gear’, enters our Oceans every year, posing the major threat of entanglement.  

The animals who travel the most are at higher risk of such encounters. For instance, an estimated 30,000 whales and dolphins die from entanglement each year.

Rising sea surface temperatures due to climate change may also alter where migratory species find food and push them past their heat tolerance. This could disrupt the longstanding migration patterns between feeding and breeding grounds.

Humpback whales migrate to warmer waters in the Ocean to breed

Nevertheless, there’s a push for the conservation of these migratory species and a desire to make the Ocean a safer place.

We’re constantly developing new technologies to help prevent animals from becoming entrapped in fishing gear. For example, Galvanic Timed Releases (GTRs) involve materials that disintegrate over time, opening doors or panels on the gear or allowing lines to break away. 

Restrictions such as vessel speed limits and altered ship routes help avoid collisions with endangered species such as North Atlantic wright whales, as well as establishing temporary precautionary zones around recently sighted whale groups.  

The migration of these marine travellers across the Ocean highway are some of the most extraordinary and treacherous journeys in the world.  

Continuing to learn and understand these journeys is essential for protecting Ocean life and reducing the threat that is posed by humans. 

What can Antarctic ice cores tell us about the history of our climate? 

Subscribe

Monthly: Impact in your inbox.

OceanGeneration-Join

Are hydrothermal vents the origin of life on Earth? 

Hydrothermal vents explained by Ocean generation.

Thousands of metres down in the Galápagos Rift valley, a deep-sea camera is towed along the seafloor, capturing our first glimpse of an extraordinary and alien world

Towering chimneys pumping out plumes of black smoke cover the seabed; these are hydrothermal vents.

Despite low oxygen levels, high toxicity and fluid temperatures of up to 350°C, hydrothermal vents host a remarkably diverse array of Ocean life.

These Ocean creatures are specially adapted to these extreme conditions: Giant tubeworms, beds of mussels and clams, fluffy crabs, pink vent fish and more.

The discovery of hydrothermal vents in 1976/ 1977 prompted a new branch of deep-sea biology. Since then more and more species have been discovered. 

Hydrothermal vents may hold the secret to the origin of life on Earth.
Image credit: Meteored

Where are hydrothermal vents found?

Hydrothermal vents were one of the first environments to have existed on Earth and have been bubbling away for over 4 billion years. 

Hydrothermal vents can form anywhere a heat source meets a fluid system. They often occur on the seafloor at tectonic plate boundaries. The hot, upwelling magma heats up seawater which is ejected as mineral-rich plumes. 

They are mostly found in the abyssal zone of the Ocean (3,000 – 6,000m). While the majority (65%) of the hydrothermal vents are located close to the tectonic plate boundaries, they are also common (12%) along chains of underwater volcanoes, called volcanic arcs.  

In 2000, a new type of vent was discovered, located several kilometres from a divergent plate boundary (tectonic plates that are moving apart) called Lost City vents. They resemble the spires of an underwater metropolis like Atlantis. 

Hydrothermal vents are found at tectonic plate boundaries. Posted by Ocean Generation.
Image credit: Pearson Education

Take a look at some of the weird and wonderful Ocean life found in the deep-sea: 

Annelid tubeworms (Riftia pachyptila) 

Also called ‘giant tubeworms’, these are extremophiles, meaning they’re able to live in extreme environments, and can reach over 1.8 metres (six feet) tall.

They have a unique body plan with no mouth or anus and their lifestyle is unique, too as they rely entirely on symbiotic bacteria as a food source.  

The Yeti Crab (Kiwa hirsuta) 

This new family of crab was discovered in 2005 and has claws covered in dense setae (stiff bristles). They get almost all their food from the chemoautotrophic bacteria (bacteria that can turn inorganic chemicals into energy) that live in these bristly structures.

These furry crabs have been seen to wave their claws to help provide a flow of oxygen and minerals to their symbiotic bacteria.  

Pompeii worm (Alvinella pompejana)  

Named after the explosive eruption of Mount Vesuvius in Pompeii, the Pompeii worm is the most heat tolerant animal we know of. They can survive temperatures at high as 80°C. One physiological adaptation Pompeii worms have evolved to survive these extreme temperatures are heat shock proteins. These’re specific proteins which provide cells with thermal stability.  

Some Ocean creatures specifically adapted to these conditions.
Image credit: 1. Yeti crab: MBARI 2. Tubeworms: Britannica, 3. Pompei worm: Wikipedia

So how are these marine animals living in such extreme conditions? 

Photosynthesis often gets all the credit for providing the energy that flows through food webs by converting light energy into food.

However, there is another lesser-known reaction. Chemosynthesis does the same thing but draws from chemical energy instead. This reaction is what supports the diverse communities we see at hydrothermal vents.

Could hydrothermal vents have sparked the origin of life on Earth 

Chemosynthetic bacteria found in these communities use the toxic hydrogen sulphide released by hydrothermal vents to convert carbon dioxide into organic carbon molecules.

These form the building blocks to all life on Earth.  

It’s this nifty reaction that’s enabled deep-sea organisms to adapt and survive at hydrothermal vents.  

Could hydrothermal vents have sparked the origin of life on Earth?

Animals living here have formed symbiotic relationships with these bacteria which can be incorporated into tissues (endosymbiosis) or on the animal surfaces (ectosymbiosis).

These chemosynthetic bacteria provide energy from the environment for their host. This can be so efficient that some creatures (such as the annelid tubeworm) don’t need to feed at all. 

The discovery of these self-sufficient ecosystems cast new light on the origins of life on Earth. It was here that the unique conditions were suitable for a spontaneous metabolism (the spontaneous formation of molecules that are essential for all life) to occur. 

This discovery gave rise to the question: Does the Ocean hold secret to the origin of life on Earth? 

Theories on the origin of life range from lighting speeding up reactions to comets delivering organic molecules from outer space.

The ancient process of chemosynthesis precedes photosynthesis, and likely sustained the earliest life on Earth. 

Bacteria were some of the first life forms to emerge. The most striking piece of evidence are the parallels between the chemistry spontaneously occurring at these vents and the core metabolic reactions found in these single-celled organisms. 

Thesel vents may hold the secret to the origin of life on Earth.
Image credit: Meteored

Cyanobacteria are an ancient group of photosynthetic microbes which represent one of the earliest forms of life on Earth. With fossils dating back to 2000 – 3500 million years ago, these single-celled organisms evolved photosynthesis, allowing life to rise up from the darkness below.  

The rest is history. 

Since their discovery, hydrothermal vents have become the most popular theory among scientists for explaining the origins of life on Earth. Yet much remains to be discovered. Secrets still held within these mysterious ecosystems have the potential to revise our life-on-Earth theories once again. 


Cover image via Research Feature.

What can Antarctic ice cores tell us about the history of our climate? 

Subscribe

Monthly: Impact in your inbox.

OceanGeneration-Join

What happens after a whale dies? Life after death in the deep-sea

A whale's death is called a whale fall. Posted by Ocean Generation.

A dead whale descends into the darkness of the deep-sea abyss.

In life, these majestic creatures travel vast distances playing an important role in surface ecology. But even in death, their decaying remains become a haven of life on the black Ocean floor.

Here in the deep Ocean the environment is sparse, offering fewer resources to sustain life. What falls from above, marine snow, is the steady trickle of dead organic material and supports an array of life on the seabed. 

A dead whale is a 30-tonne avalanche of fat and organic carbon, equivalent to more than 1000 years’ worth of marine snow across 100 square meters. 

A whale's death becomes an island of biodiversity in the deep Ocean.

Eventually, a whale fall (a whale’s death) becomes an island of biodiversity in the deep-Ocean.

1. It all starts with a feeding frenzy. 

Soon after the whale falls, a variety of species descend upon it and the dinner party begins.

The first to arrive are the large Ocean wanderers such as hagfish (eel-shaped jawless fish) or gigantic sleeper sharks. These mobile scavengers remove soft tissue by rasping or tearing at the flesh exposing the energy-rich skeleton, giving the name of this phase the mobile-scavenger stage.

2. As the pieces get smaller so do the scavengers. 

It can take up to two years for the mobile-scavengers to finish feeding on the whale, where the next wave of guests arrives in a second phase known as the enrichment-opportunist stage.

Animals like polychaetes (a class of marine worms) and crustaceans including amphipods (shrimp-like crustacea) will move in to feed on remaining blubber and burrow into the nutrient enriched sediments surrounding the whale.  

The remains of a whale mean life to many deep-sea animals.
Image credit: National Marine Sanctuary. Photo: OET/NOAA

3. Finally, only the bones of the whale remain.

These would seemingly have no further use. However, ecological diversity is about to flourish in the sulfophilic stage of the whale fall. The whale’s bones provide a large reservoir of energy-rich lipids, a shining prize to deep-sea organisms. 

Bacteria break down fatty lipids in the bones, releasing sulphides. The sulphides can be used to generate energy, in a process called chemosynthesis (producing food using chemicals as an energy source instead of sunlight).

These chemosynthetic bacteria have become resistant to sulphides’ toxicity and can establish bacterial mats which act as a foundational food source, supporting a huge array of marine biodiversity: sponges, mussels, limpets, sea spiders and snails.

The breakdown of bone-lipids can take 50-100 years and these mini-ecosystems are highly significant for seabed ecology. Even then, after the complete extraction of nutrients, it isn’t over.  

Decades after a whale dies, it's still essential to marine ecosystems.

Decades after a whale dies, the whale-fall is still essential to marine ecosystems:  

Some scientists believe there’s a further stage of succession: the reef stage. Even after the feeding frenzy, the whales’ bones can remain for more than 100 years, acting as hard surface for suspension feeders to settle.

These ‘habitat islands’ act as evolutionary stepping stones between other seafloor ecosystems like hydrothermal vents. This may have allowed sulphide-specialised organisms to spread across the seafloor and diverge into new species. 

What happens after a whale dies? There's extraordinary life.
The remains of a whale fall near the Davidson Seamount in Monterey Bay National Marine Sanctuary. Photo: OET/NOAA

Despite whale-fall ecosystems being poorly sampled, 407 species have been found living off the carcasses globally, which is high for the bottom of the sea. Of these, 21 species can only be found on whale-fall, known as whale-fall specialists.

Whale-fall specialists are species that require a whale carcass to complete their lifecycle and maintain their populations. These marine organisms will jump from habitat island to island to survive.

For example, Osedax, Latin for “bone-eater”, are a genus of polychaetes (marine worms) found worldwide.  They are important ecosystem engineers by eroding whale bones and allowing rarer species to colonise the whale skeleton.  

How whale populations impact the global Ocean? 

Whale-falls also contribute to the conversion of inorganic carbon (CO2) into organic carbon (marine life), a set of processes known as the Biological Carbon Pump (BCP). This carbon is sequestered (stored) in the deep Ocean.  

What happens after a whale dies? Posted by Ocean Generation.
Illustration by J Yang

Whales deliver huge amounts of carbon in their biomass to the seafloor, which is then locked-away for centuries within deep-sea sediments.

Any threat to whale populations will threaten entire ecosystems and disrupt the process of carbon sequestration.

Commercial whaling, for example, has been depleting whale populations for around 1000 years, beginning in 1000CE. Experts agree that tens of millions of whales were likely killed during this period, pushing many whale species to extinction and causing the extinction of whale-fall specialist species, who rely on whale falls for survival.

A single whale-fall can provide everything a whale-fall specialist needs for 50-100 years, meaning there is a lag-time of at least 30-40 years before the decline in whale populations is felt. Which is to say, if whale populations can recover, we may be able to mitigate the impacts on deep-sea ecosystems

Whales make an incredible contribution to our Ocean.

As we follow the timeline of a whale’s life, we can see the incredible contribution whales make to the Ocean.

From enhancing surface ecology in life, to supporting entire ecosystems in death. 

What can Antarctic ice cores tell us about the history of our climate? 

Subscribe

Monthly: Impact in your inbox.

OceanGeneration-Join