Why the Arctic is the fastest warming region on the planet

The changing Ocean climate: Why the Arctic is the fastest warming region

A polar biome brimming with glaciers, permafrost, and sea ice. Home to countless species, but for how much longer?  

The Arctic is extremely sensitive to environmental changes. The increase in global mean air temperature is linked to the excessive melting of Arctic sea ice: one of the most unambiguous indicators of climate change. Since 1978, the yearly minimum Arctic sea ice extent has decreased by ~40%.

Global warming is rapidly taking place due to our greenhouse gas (like carbon dioxide (CO2)) emissions. Our current emission rates of ~40 Gt CO2/year could leave the Arctic ice-free by 2050.  

Our Ocean also plays a role in climate change.  

Barents Sea is the hotspot of global warming: Explained by Ocean Generation

“The hotspot of global warming” – not the nickname you want! 

Unfortunately, this is the nickname the Arctic’s Barents Sea is bestowed. Atlantification (the process by which the warming climate alters the marine ecosystem towards a more temperate (milder) state) is to blame.  

Scientists (though they’re still not 100% sure of all processes involved) have noticed drastic changes in our Ocean where Arctic and Atlantic conditions collide.

Arctic water is colder and less salty than Atlantic water. Thawing ice releases freezing freshwater into the Ocean, keeping Arctic water buoyant. Atlantic water, being warmer and more saline, should sink beneath Arctic water, creating a salinity gradient called a halocline.  

The halocline protects ice from thawing by blocking warm water from rising.

However, because atmospheric temperatures are increasing and melting the ice, and less ice is imported into the Barents Sea, freshwater supplies are dwindling. This disrupts the halocline. Surface winds stir up the Ocean, drawing Atlantic heat upwards to melt the ice.

Atlantification 
and the Arctic halocline explained by Ocean Generation.
Design by Grace Cardwell

Throughout the 2000s, the Barents Sea experienced a 1.5°C warming of the upper 60m of its water column, with sea ice thickness decreasing by 0.62m/decade.  

Plenty of fish in the sea – but are they the right ones?  

Birds are indicators of a changing marine ecosystem.  

After hot winters in Kongfsjord (Norway), Black Legged Kittiwake diets shifted in 2007 from Arctic cod to Atlantic capelin and, as of 2013, herring as their main meal. Whilst Kittiwakes seem to have adapted to their new diet, some species aren’t so lucky…  

The most abundant sea bird in the North Atlantic, the Little Auk, should eat Arctic zooplankton.  

The Little Auks decreased in fitness (the ability to survive and reproduce in a competitive environment) due to Atlantic water inflow. Chick growth rate decreased from six to five grams per day when Atlantic water inflow increased between 5-25% in Horsund (Norway).  

Atlantic zooplankton are a suboptimal food source for the Little Auk because they provide less energy than Arctic zooplankton. Because there is less Arctic prey, chick parents spend time and energy foraging for it and might favour their own maintenance over their chicks.  

Birds are indicators of a changing marine ecosystem
Credit: Black Legged Kittiwake by Yathin S Krishnappa, Little Auk by RSPB

Scientists anticipate the Arctic will have the largest species turnover globally, predicting a northward marine fish species migration of 40km/decade. Atlantic species are already outcompeting Arctic species, which could lead to extinction and changes in the food web. 

Could the killer whale overthrow the polar bear, which has reigned as the top Arctic predator for over 200,000 years?  

Feedback. But not the helpful kind…

In 1896, scientist Svante Arrhenius noticed that Arctic temperature changes were higher relative to lower latitudes. This is known as Arctic Amplification and has occurred for over three million years.  

The main driver of this is the albedo effect. This effect is a positive feedback mechanism, where the result of the mechanism causes the mechanism to repeat itself – in a loop. 

Dark objects absorb 93% of the sun’s energy. When the Arctic receives solar radiation in the spring, melting ice, darker areas are exposed amongst the ice which absorb more solar radiation. This reveals the even darker Ocean, repeating the loop.  

Melt seasons are becoming longer as a warming climate leads to an earlier spring melt and exposes darker areas for longer. The Barents Sea’s ice-free season increases by 40 days per decade.  

Where ice has melted, vegetation replaces tundra. Plants are darker than ice, so this furthers the albedo effect. Permafrost also melts, releasing CO2 and methane (which has 84x the warming effect of CO2 in the first 20 years after its release), contributing to the greenhouse effect and exposing darker ground.  

Since 1979, the Arctic has warmed 
nearly four times faster 
than the rest of the globe. Posted by Ocean Generation, leaders in Ocean education.

We are amplifying these positive feedbacks with greenhouse gas emissions. Since 1979, the Arctic has warmed nearly four times faster than the rest of the globe, with the most Arctic Amplification observed in autumn and winter.

Positive feedbacks are taking place very quickly, perhaps too quickly for negative feedbacks (like cloud cover) to balance them. Scientists are uncertain about future trajectories. 

In the past, the Palaeocene-Eocene thermal maximum saw an ice-free Arctic. Is this a mirror of the future?  

What can be done to slow down Arctic warming

Local knowledge aids global governance and monitoring of organisms and landscapes.  

Regional plans like Alaska’s 2017 “Climate Action for Alaska” set targets for reducing emissions.  

Canada’s ArcticNet scheme distributes knowledge for policy development and adaptation strategies, helping Canadians face the challenges and opportunities of socio-economic and climate change.  

The Arctic Council involves international cooperation towards marine and science research. Arctic and non-Arctic states, indigenous representatives and NGOs engage in binding agreements, for example: committing to enhance international Arctic scientific cooperation.  

On a smaller scale, the Arctic Ice Project wants to spread silica beads across the ice to increase reflectivity.  

But it’s clear: further global cooperation is needed. In 2015, The Paris Agreement stated that temperatures shouldn’t rise 2°C above pre-industrial levels, yet global warming is continuing. 

Barents Sea is the hotspot of climate change: Explained by Ocean Generation

What can we do?  

Every tonne of CO2 we emit melts three m2 of Arctic sea ice in the summer.  

To reduce emissions, hold yourself, your country, and the businesses who produce the goods you consume accountable. Walk instead of drive. Switch off lights. Support others fighting for the Arctic.

Don’t just leave it to the scientists. The Arctic isn’t a disappearing, far-away land. Your help, regardless of scale, is necessary for our Ocean to thrive.

What can Antarctic ice cores tell us about the history of our climate? 

Subscribe

Monthly: Impact in your inbox.

OceanGeneration-Join

The impact of overfishing and what you can do about it

The impact of overfishing and what you can do about it: Explained by Ocean Generation.

Fish is one of the most important food sources on the planet with more than 3.3 billion people relying on it as an important part of their diet.

Fishing is an ancient practice first thought to emerge 40,000 years ago, and for many people, it is central to their culture and way of life.  

However, with our population on the rise and the demand constantly increasing, pressure from commercial fleets is causing fishing to become a problem. 

Fisheries ideally harvest the Maximum Sustainable Yield (MSY), which is the most that can be continually extracted from a population without causing it to decline.

However, more and more of our wild fish stocks are being harvested at a rate faster than the fish populations can naturally regenerate. This is known as overfishing. Advancements in modern technology have exacerbated this by allowing modern fleets to track, target and process huge amounts of seafood.

According to the 2024 FAO report, 37.7% of global fish stocks are fished at unsustainable levels.

However, a recent study of 230 fisheries has revealed that the computer models used to set catch limits often overestimate the size of fish populations. This new research suggests that 85% more fish populations have collapsed than is recognised by the FAO estimate.  

This high level of uncertainty when counting fish stocks poses a greater risk of overfishing and highlights the need for extra precautions to be taken.

37.7 percent of global fish stocks are fished at unsustainable levels. Posted by Ocean Generation.

Fishing in the open Ocean

Countries are allowed to exploit Ocean regions within 200 nautical miles of their coast, called the Economic Exclusion Zone (EEZ). Beyond these areas is what’s known as the high seas: 60% of our Ocean which lies beyond national jurisdiction.

The risk of overfishing is high here, as there’s great difficulty regulating such a huge expanse of Ocean that belongs to no one. 

One of the principles of the high seas is the freedom for any state to have passage and engage in fishing.

However, it’s companies that rule these regions, not countries.  

The combined impact of illegal fishing, and legal fishing that fails to follow scientific advice has led to 65% of straddling (fish that migrate between the high seas and EEZs) and high seas fish stocks to become overfished and for species richness to decline. 

The challenges of regulating the Ocean and fisheries lead to the damage of one of our most important resources.  

Threats such as over-exploitation, destructive fishing methods, and bycatch endanger the health of our Ocean and Ocean biodiversity. Therefore, there’s an immense need for change.  

We need to improve the sustainability of fisheries

How can we make the fishing industry more sustainable?  

Improving the sustainability of fisheries can be done in many ways. Just to name a few: increased regulation on catches and fishing gear, more legislative protection on different areas or cooperation between nations.

One important way is to influence the market and demand sustainability, which can be achieved through consumer action. 

When you step into your local market, opting for sustainable seafood helps to place pressure on suppliers and drives the industry to improve – as it all comes down to consumer demand. 

So, what can I do as a consumer? 

1. Check the certification. 

The Marine Stewardship Council (MSC) completes an assessment of a fishing operator. They look at the sustainability of their fishing, minimisation of environmental impact and how effective their management is.

Sustainable fisheries will be awarded an MSC blue badge, which appears on the packaging of their fish in store. It’s an easy way to identify sustainably caught fish while shopping. The MSC blue label is found on more than 25,000 seafood products all over the world.  

However, it’s worth noting that while the MSC blue badge is the world’s most widely used certification programme for wild fisheries, it’s not without its limitations.  

An independent review by ‘On the Hook’ in 2023 argued that the certification process is insufficient as an indicator of sustainable fishing and doesn’t meet consumer and market expectations.  

Nevertheless, if consumers favour MSC approved seafood whenever possible, this will encourage fisheries to improve their sustainability and meet standards – as it’s currently the best sustainability certification we have. 

Opting for sustainable seafood helps the industry to improve. Posted by Ocean Generation

2. Educate yourself on your options. 

Another way to direct your decision to the most Ocean-friendly option is through education.  

The Marine Conservation Society has a Good Fish Guide, designed to have a traffic light system to represent the environmental impact of your food. It uses scientific advice on the species and how and where it was caught to help inform the consumer on the best possible choice. The guide can be downloaded onto a phone and therefore accessed at any time! 

Similar resources such as  Seafood Watch and GoodFish assess Canadian and U.S markets and Australian markets respectively, who will also help you navigate the most sustainable choices. 

3. Choose your supplier. 

Rather than asking consumers to make the effort, some retailers will make the choice for them, and only stock sustainably produced goods.   

For example, in the UK, M&S has worked with the WWF since 2010, focusing on their supply chains and ensuring traceability and sustainability in their seafood products. Sainsbury’s won both the MSC and ASC (Aquaculture Sustainability Council) awards in 2023, celebrating their achievements in sustainable fishing and responsible aquaculture.

So, if possible, try to consider buying seafood from retailers such as these, as more hassle-free way of making more fish friendly decisions.  

The management of our Ocean resources is vital in allowing them to provide for us in the future. For those who choose to, fish is a favourite, but it will taste much better for having made it to your plate in the most sustainable way, minimising the harm to our Ocean.  

What can I do to make the fishing industry more sustainable: Explained by Ocean Generation

What can Antarctic ice cores tell us about the history of our climate? 

Subscribe

Monthly: Impact in your inbox.

OceanGeneration-Join

Why do marine animals migrate: Everything you need to know  

Migration across the Ocean is such an extraordinary phenomenon that scientists today are still trying to discover how and why it’s done. 

  • How does a turtle find the same exact beach where it hatched after an epic journey across the Ocean? 
  • How do gray and humpback whales navigate record-breaking migrations: 14,000 miles of deep blue sea over 172 days? 
  •  Why do sardines, whales, turtles, hammerheads, great whites, manta rays and all manner of smaller creatures undertake these incredible journeys across our seas? 

Why do marine animals migrate across the open Ocean? 

Crossing an entire Ocean is extremely tiring. You could get lost or caught in a storm and you’re exposed to various risks along the way, so why do it? 

Migration comes down to a need for a resource that an animal doesn’t have in its current environment. They’re often seasonal, long-distance movements in search of food, mates, habitat or to escape predation.

Long journeys across the Ocean come with many challenges for migrants. Posted by Ocean Generation, leaders in Ocean education

Food: One of the biggest reasons for migration. 

Baleen whales, like humpbacks and gray whales, will migrate to northern latitudes during the spring and summer to feed in cold arctic waters, rich in krill and shrimp like crustacea. The long, tiresome journey from the south is made worthwhile for the feast of food that awaits them there.  

Turtles also make their way north, with species like leatherbacks spotted in the waters off Canada, Alaska or Nova Scotia. Leatherbacks are some of the most highly migratory animals on Earth, the longest recorded journey being 12,744 miles from Indonesia to Oregon, USA.

Here during the summer months, there is an increasing abundance of a turtle’s favourite food: jellyfish.

But of course, the food can move too.

Fish are one of the most important sources of food on Earth, preyed upon by numerous different animals, including humans. The KwaZulu-Natal sardine run, also known as the “greatest shoal on Earth,” is a mass migration of South African sardines to the sub-tropical waters of the Indian Ocean.  

Sardine run is a mass migration of South African sardines in the Ocean
Image credit: Mark van Coller/Solent News

Estimated to rival Africa’s wildebeest migration as being the largest biomass migration on Earth, this shoal becomes a ‘moveable feast’ for opportunistic predators like sharks, dolphins, gannets, seals and whales.  

Whales also migrate to find a mate.

Whales, like humpback and gray whales, feed in cold arctic and sub-arctic waters but that’s not a suitable place to find a mate and give birth to their offspring. They could breed here but there are serious risks to the mothers and their calves with the cold water and predation by animals like orcas. 

Instead they move from north to south during the winter months, giving birth to their young in shallow, warm waters such as lagoons. Popular destinations include Baja California, Mexico, Hawaii and Japan.  

Frodo the humpback whale, named after the Lord of the Rings character, underwent his record-breaking adventure to find a mate from the Mariana islands to Mexico covering around 7,000 miles. Check out his journey on Happywhale

Whales migrate thousands of miles across the Ocean. Posted by Ocean Generation
Map of Frodo’s travels from Happywhale.com

Humpbacks will often migrate the same routes they were guided on by their mothers. Frodo’s unusually long journey may be relic behaviour of the whaling industry, where depleted numbers require males to travel further in search of a mate.  

Turtles will return to the exact same beach where they hatched to lay their eggs, known as natal homing. Most turtle species spend most of their time in the open Ocean, widely dispersed across the globe.  

But how do they know where they are and where they’re going? 

Turtles show remarkable navigation skills with pinpoint accuracy using a combination of external cues to calculate their position and route. When they are near the site of their hatching, turtles may use visual cues such as the incline of the beach or the smell of the water or air.  

However, in deeper water turtles must resort to other methods to find their way home.  Loggerhead, green and leatherback turtles have all demonstrated the use of a ‘magnetic map sense’ like other long-distance migrants such as bird and butterflies.  

Along a coastline, the inclination and intensity of the magnetic field will vary, giving rise to a unique magnetic signature at a precise location. Scientists suggest that hatchlings imprint on this unique magnetic signature and use it to navigate back across the entire Ocean years later.  

Sea turtles have remarkable navigation skills to migrate across the Ocean

Long journeys come with obstacles that Ocean migrants must face.  

Our Ocean is becoming an increasingly treacherous place for its inhabitants, with threats from entanglement, ship strike, lack of jurisdictional protection and climate change. 

As these migrants make their way along vast journeys, they tend to cross paths with one of the most dominant and widely distributed animals on Earth: people.  

Many important migratory routes for whales and other surface-dwelling animals like turtles and sharks, converge with areas of heavy maritime traffic. This cross over can lead to ship strike, which is harmful if not fatal to an animal.  

Species like the endangered North Atlantic Wright whale are particularly vulnerable as their habitat and migration routes are close to major ports and shipping lanes. There were 37 whales were reported injured in this region between 2010 and 2014 and that is likely to be an underestimate. 

Furthermore, about 640,000 tonnes of discarded fishing gear, known as ‘ghost gear’, enters our Oceans every year, posing the major threat of entanglement.  

The animals who travel the most are at higher risk of such encounters. For instance, an estimated 30,000 whales and dolphins die from entanglement each year.

Rising sea surface temperatures due to climate change may also alter where migratory species find food and push them past their heat tolerance. This could disrupt the longstanding migration patterns between feeding and breeding grounds.

Humpback whales migrate to warmer waters in the Ocean to breed

Nevertheless, there’s a push for the conservation of these migratory species and a desire to make the Ocean a safer place.

We’re constantly developing new technologies to help prevent animals from becoming entrapped in fishing gear. For example, Galvanic Timed Releases (GTRs) involve materials that disintegrate over time, opening doors or panels on the gear or allowing lines to break away. 

Restrictions such as vessel speed limits and altered ship routes help avoid collisions with endangered species such as North Atlantic wright whales, as well as establishing temporary precautionary zones around recently sighted whale groups.  

The migration of these marine travellers across the Ocean highway are some of the most extraordinary and treacherous journeys in the world.  

Continuing to learn and understand these journeys is essential for protecting Ocean life and reducing the threat that is posed by humans. 

What can Antarctic ice cores tell us about the history of our climate? 

Subscribe

Monthly: Impact in your inbox.

OceanGeneration-Join

Re-thinking the shark stereotype

Rethinking the shark stereotype. Posted by Ocean Generation

With torpedo-shaped bodies, forked tails, and dorsal fins, sharks belong to a group known as cartilaginous fishes (meaning their skeleton is made from cartilage, not bone).

As one of the oldest evolutionary groups, the earliest fossil evidence for sharks or their ancestors’ dates to 400 – 450 million years ago. 

This means that the earliest sharks may have been around before trees even existed (trees evolved around 360 million years ago).  

What makes sharks unique?  

Sharks are one of the most diverse groups of predators in the animal kingdom. They come in all shapes and sizes. Sharks can have huge, gaping mouths (like the basking shark), long whip-like tails (like the thresher shark) or flattened, club-like heads (like the hammerhead shark).  

Sharks are one of the most diverse groups of predators

The largest species is the whale shark, reaching lengths of 20m. The smallest is the dwarf lanternshark which grows to just 20cm long. 

It’s this diversity in shape, size, feeding mechanism and habitat that has enabled sharks to persist throughout all parts of the Ocean over millions of years.  They even live in some freshwater environments.

Sharks come in many shapes and forms

Why are sharks important?  

Sharks can play many roles in ecosystem functioning: from predators to prey, competitors, and nutrient transporters.  

Some species of shark are apex predators, meaning that they’re at the top of their food chain and exert a top-down control on food webs. Others can sit further down the food chain, yet still play an important role as food for other predators and transporting energy through ecosystems. 

Large scale movements and migrations of sharks also connect even the most widely spaced food webs, transporting nutrients across the open Ocean system.  

Unfortunately, sharks are heavily misunderstood. 

Media and popular culture often demonise sharks, portraying them as senseless killers through sensationalistic headlines and striking imagery. This is designed to incite fear, leading us to believe that the threat posed by sharks is greater than it really is.   

Did you know? Our fear of sharks originates from the ‘Jaws Effect’. It’s the powerful influence of the famous 1975 Hollywood thriller on our human perception of risk from sharks. 

Put simply: Few animals are feared more than the shark.

Some sharks are at the top of the food chain

But in reality, sharks have much more to fear from us than we do them.  

The probability of a shark biting a human is very low compared to many other risks that people face in their everyday lives. According to the International Shark Attack File, there were 69 unprovoked shark bites, including 10 unprovoked shark-related deaths globally in 2023.

To put this into perspective, on average, 500 people are killed by elephants each year.  

Sharks don’t actively hunt humans. The most common shark incident is known as a ‘test bite’. It means sharks swim away after a single bite once they realise it’s not their preferred prey. Surfers and other board sports make up 42% of reported incidents, as the shape of their boards can bear a resemblance to seals and other prey from below.  

When we do encounter sharks, it’s often because their natural behaviour clashes with our activities, from fishing to recreation.

In contrast, the global population of sharks and rays have plummeted by over 70% over the past 50 years. 

The pressure on shark populations continues to rise. At least 80 million sharks are killed each year and over 1/3 of all shark and ray species now threatened with extinction. 

The population of sharks has plummeted

To put that into perspective, there are only 19 countries in the world whose population is greater than 80 million. As of 2024, the number of sharks killed each year exceeds the total population of Thailand (71.8 million), the UK (68.3 million), and France (68.1 million).  

Sharks are particularly vulnerable to overexploitation 

They grow slowly and take a long time to reach sexual maturity.

Shark mothers put a significant amount of energy and time into the development and care of their offspring. They also take extensive rest periods between pregnancies.  

This makes sharks far less resilient and slower to recover from disturbance and overexploitation than other fish species.

Overfishing is the greatest threat to shark populations worldwide.  

The 70% decline in shark and ray populations is largely attributed to an 18-fold increase in fishing pressure over the past 50 years.

A key incentive for shark fishing is the Shark Fin Trade. This is the practice of removing the fins from a captured shark and discarding the rest back into the Ocean. Shark fins have become one of the most valuable seafood products worldwide, and this globalised market exists largely to meet the demand for the traditional dish: shark fin soup.

However, despite widespread legislation designed to prevent shark finning in recent years, fishing pressure and shark mortality continues to rise.  

Sharks are vulnerable to overfishing. Posted by Ocean Generation: We're rethinking the shark stereotype

Restrictions surrounding the practice of shark finning has driven up the appetite for shark meat. It’s because it’s often only illegal to land fins with the shark removed, not the whole animal. As a result, largely unregulated fisheries in the high seas continue to put pressure on global shark species. 

These markets are muddied by misidentification (often of protected or endangered species). For example, in Brazil, the meat is labelled “cação”: an umbrella term under which both shark and ray meat are sold. 

This lack of transparency leads to consumers being poorly informed, and they often aren’t aware that the animals on their dinner plate are at risk of extinction.

Scientists used satellite tracking to discover that about 24% of the area sharks use each month overlap with large-scale industrial fishing zones. This means that many shark species in the open Ocean spend almost ¼ of their time under the looming shadow of large-scale fishing fleets. 

Climate change compounds these threats.

The Ocean’s oxygen minimum zones (naturally occurring areas of open Ocean low in oxygen) have expanded horizontally and vertically. This is due to higher temperatures and changing circulation patterns associated with climate change.  

The expansion of these oxygen minimum zones has caused the habitat of oceanic sharks to be compressed towards the surface, since they can’t survive in low oxygen conditions.  

Species like the blue shark are being pushed closer towards intense surface fisheries as a result, making them more vulnerable to being caught as bycatch.

Sharks diversity has enabled them to persist through millions of years. Posted by Ocean Generation: We're rethinking the shark stereotype

Despite the alarming statistics, it’s not all bad news for sharks. 


In the northwest Atlantic, the white shark appears to be recovering after a 70% decline over the past 50 years, and hammerhead shark populations are also rebuilding here. This success is owed to strictly enforced fishing bans and quotas throughout their range.

This gives us hope that the successful implementation and enforcement of science-backed management across a species range can reverse shark population declines. 

To protect sharks, we need to change the way we think about them.  


Our irrational fear of sharks is limiting support for their conservation. 

When we portray sharks in a negative light, our sense of risk becomes heightened. This leads people to believe that extreme mitigation measures such as culling are not only appropriate, but necessary.  

This fear also diverts our attention away from the species which are at the highest risk of extinction and ignores the ongoing threats to sharks and their habitats.  

Sharks have survived all five previous mass extinction events. For them to survive the sixth, we must re-evaluate our perceptions of them and show our support for the conservation of these magnificent creatures.  

We need to protect sharks

What can Antarctic ice cores tell us about the history of our climate? 

Subscribe

Monthly: Impact in your inbox.

OceanGeneration-Join

Surviving in the Intertidal Zone: The gateway to the Ocean 

The intertidal zone is the gateway to the Ocean

The intertidal zone is the dynamic interface between land and sea, which is constantly shifting and changing with the tide.

This extreme ecosystem is divided into four vertical zones, based on the amount of time each section is submerged. There are the low tide zone, middle tide zone, high tide zone and splash/spray zone. 

The intertidal ecosystem in the Ocean is divided into four zones
Image credit: Science Learning Hub

Anything that lives in the intertidal zone must withstand dramatic changes in moisture, temperature, salinity, and wave action.  

Marine life and ecosystems respond to these challenges either by short-term, reversible adjustments (phenotypic plasticity), or by long-term adaptations that involve heritable genetic changes (evolution). 

Let’s explore the challenges of living in this dynamic environment, and some of the ingenious ways that intertidal animals have adapted to survive here.

Intertidal animals are exposed to air for a large portion of their lives

The drying out effect of air exposure poses a challenge for these animals, and they must find ways to reduce water loss to survive here.

The most common adaptation is to avoid water loss altogether. Intertidal molluscs (like mussels and oysters) retain water within their shells and tightly seal them shut. Others seal off their shell opening with a door-like structure called an operculum (snails do this).  

Limpets seal themselves against the hard substrate using suction and produce a mucous layer at this interface to create a watertight seal.  

Limpets seal themselves agains hard substrate in the intertidal zone

Air exposure leads to greater temperature fluctuations and extremes. 

Mobile animals such as crabs avoid the largest temperature changes by shuttling between cooler and warmer environments. This technique is called behavioural thermoregulation.

For less mobile animals, thermal regulation becomes more challenging. 

More sensitive animals such as sea stars/ starfish are limited to the low tide zone where they’re more frequently submerged.

Others, such as some species of intertidal mollusc, have evolved internal mechanisms such as heat shock proteins and a high freeze tolerance. These help the animals to cope with extreme temperature variations in the high tide zone. 

Tidal pool at the beach. Posted by Ocean Generation.

The intertidal zone is characterised by severe changes in oxygen availability. 

Particularly in overcrowded tide pools, when many animals are aggregated together during low tide, increased respiration can reduce water oxygen content to critical levels. 

In response to this, some intertidal animals can switch to aerial respiration and take in oxygen from air instead of water.  

For example, the high intertidal porcelain crab (Petrolisthes) has an aerial gas exchange organ on each of their walking legs for air-breathing during periods of emersion.

Porcelain crabs can take oxygen from air instead of water. Posted by Ocean Generation.

On sandy shores, some species of mudskipper will repeatedly emerge at the surface of their burrows and take in mouthfuls of air. They deposit this air into a specialised chamber within their burrows to protect themselves and their eggs against hypoxic (low oxygen) conditions. 

On sandy shores, activities of some intertidal creatures can influence local oxygen availability.  

Lugworms burrow deep into the sediment, feeding on organic material in the sand and creating U-shaped burrows deep below the surface. These burrows help to rework and ventilate the sand. This process is known as bioturbation, which increases localised oxygen availability.

They spend their lives filtering out organic material from the sand, pooping out wiggly mounds of undigestible sand to the surface, known as ‘casts’. 

Lugworms burrow deep into the sediment in intertidal zones.

All intertidal habitats are impacted by fluctuations in salinity 

Heavy rain or river inputs can make coastal water fresher, and evaporation and droughts can cause hypersaline (saltier) conditions.

On sandy and muddy shores, intertidal worms move vertically up and down their burrows along a salinity gradient until they reach more favourable conditions.

Other animals maintain their internal osmotic (salt and water) balance in the same way that they protect themselves from water loss. Some clamping to the substrate (limpets); others closing their operculum (snails); or moving to more favourable environments (crabs).

The shallows are exposed to ultraviolet (UV) radiation from the sun. 

This can cause DNA mutations and damage to molecules needed for key biological pathways.  

To combat this, the aggregating anemone (Anthopleura elegantissima) contracts during peak levels of UV radiation. It attaches debris to its column for extra protection against harmful sun rays: Just like putting on a sunhat.

Other intertidal animals have even evolved ‘sunscreens’. These are absorptive, reflective, or light-scattering pigments in their skin and mucus which help to protect them from the damaging effects of sun exposure. 

For example, Irish moss (Chondrus crispus) is the reddish leafy seaweed that can be found on rocky shores and tide pools across the UK and Ireland. If you look closely, you’ll see that it looks slightly iridescent in the light.

This is because the tips of the growing fronds are covered in multiple, transparent layers. When sunlight hits these layers, it’s reflected away from these delicate regions, protecting this alga from harmful UV rays.

Irish Moss reflects sunlight to protect from harmful UV rays

To avoid being swept away by wave action, intertidal animals must hold on tight. 

Barnacles secrete cement, while mussels produce a sticky thread called Byssus threads to attach themselves to the rock. Once attached, these sessile animals remain in position for most of their lives.  

Other intertidal creatures rely on suction. Sea stars (starfish) have rows of tube feet on their underside. Each of their feet has a sticky, suction cup at its end that help it hold on to the rocky substrate. These also come in useful to prise apart the shells of bivalves to eat.

Sea stars have rows of tube feet to stay in place

Many adaptations are shared among diverse animal groups.  

This is an example of convergent evolution: when similar features independently evolve among different species under the same pressures.

Understanding the challenges overcome by animals living at the interface between land and sea may allow us to better understand our own historical transition from Ocean to land, millions of years ago.  

So next time you’re at the coast, see if you can spot some of these creatures and their adaptations. (Remember, they’re under enough stress already, so be respectful and don’t touch, poke or prod at them).

Take a moment to appreciate the incredible feat of survival achieved by the Ocean creatures that not only survive but thrive in this extreme environment.

What can Antarctic ice cores tell us about the history of our climate? 

Subscribe

Monthly: Impact in your inbox.

OceanGeneration-Join

Are hydrothermal vents the origin of life on Earth? 

Hydrothermal vents explained by Ocean generation.

Thousands of metres down in the Galápagos Rift valley, a deep-sea camera is towed along the seafloor, capturing our first glimpse of an extraordinary and alien world

Towering chimneys pumping out plumes of black smoke cover the seabed; these are hydrothermal vents.

Despite low oxygen levels, high toxicity and fluid temperatures of up to 350°C, hydrothermal vents host a remarkably diverse array of Ocean life.

These Ocean creatures are specially adapted to these extreme conditions: Giant tubeworms, beds of mussels and clams, fluffy crabs, pink vent fish and more.

The discovery of hydrothermal vents in 1976/ 1977 prompted a new branch of deep-sea biology. Since then more and more species have been discovered. 

Hydrothermal vents may hold the secret to the origin of life on Earth.
Image credit: Meteored

Where are hydrothermal vents found?

Hydrothermal vents were one of the first environments to have existed on Earth and have been bubbling away for over 4 billion years. 

Hydrothermal vents can form anywhere a heat source meets a fluid system. They often occur on the seafloor at tectonic plate boundaries. The hot, upwelling magma heats up seawater which is ejected as mineral-rich plumes. 

They are mostly found in the abyssal zone of the Ocean (3,000 – 6,000m). While the majority (65%) of the hydrothermal vents are located close to the tectonic plate boundaries, they are also common (12%) along chains of underwater volcanoes, called volcanic arcs.  

In 2000, a new type of vent was discovered, located several kilometres from a divergent plate boundary (tectonic plates that are moving apart) called Lost City vents. They resemble the spires of an underwater metropolis like Atlantis. 

Hydrothermal vents are found at tectonic plate boundaries. Posted by Ocean Generation.
Image credit: Pearson Education

Take a look at some of the weird and wonderful Ocean life found in the deep-sea: 

Annelid tubeworms (Riftia pachyptila) 

Also called ‘giant tubeworms’, these are extremophiles, meaning they’re able to live in extreme environments, and can reach over 1.8 metres (six feet) tall.

They have a unique body plan with no mouth or anus and their lifestyle is unique, too as they rely entirely on symbiotic bacteria as a food source.  

The Yeti Crab (Kiwa hirsuta) 

This new family of crab was discovered in 2005 and has claws covered in dense setae (stiff bristles). They get almost all their food from the chemoautotrophic bacteria (bacteria that can turn inorganic chemicals into energy) that live in these bristly structures.

These furry crabs have been seen to wave their claws to help provide a flow of oxygen and minerals to their symbiotic bacteria.  

Pompeii worm (Alvinella pompejana)  

Named after the explosive eruption of Mount Vesuvius in Pompeii, the Pompeii worm is the most heat tolerant animal we know of. They can survive temperatures at high as 80°C. One physiological adaptation Pompeii worms have evolved to survive these extreme temperatures are heat shock proteins. These’re specific proteins which provide cells with thermal stability.  

Some Ocean creatures specifically adapted to these conditions.
Image credit: 1. Yeti crab: MBARI 2. Tubeworms: Britannica, 3. Pompei worm: Wikipedia

So how are these marine animals living in such extreme conditions? 

Photosynthesis often gets all the credit for providing the energy that flows through food webs by converting light energy into food.

However, there is another lesser-known reaction. Chemosynthesis does the same thing but draws from chemical energy instead. This reaction is what supports the diverse communities we see at hydrothermal vents.

Could hydrothermal vents have sparked the origin of life on Earth 

Chemosynthetic bacteria found in these communities use the toxic hydrogen sulphide released by hydrothermal vents to convert carbon dioxide into organic carbon molecules.

These form the building blocks to all life on Earth.  

It’s this nifty reaction that’s enabled deep-sea organisms to adapt and survive at hydrothermal vents.  

Could hydrothermal vents have sparked the origin of life on Earth?

Animals living here have formed symbiotic relationships with these bacteria which can be incorporated into tissues (endosymbiosis) or on the animal surfaces (ectosymbiosis).

These chemosynthetic bacteria provide energy from the environment for their host. This can be so efficient that some creatures (such as the annelid tubeworm) don’t need to feed at all. 

The discovery of these self-sufficient ecosystems cast new light on the origins of life on Earth. It was here that the unique conditions were suitable for a spontaneous metabolism (the spontaneous formation of molecules that are essential for all life) to occur. 

This discovery gave rise to the question: Does the Ocean hold secret to the origin of life on Earth? 

Theories on the origin of life range from lighting speeding up reactions to comets delivering organic molecules from outer space.

The ancient process of chemosynthesis precedes photosynthesis, and likely sustained the earliest life on Earth. 

Bacteria were some of the first life forms to emerge. The most striking piece of evidence are the parallels between the chemistry spontaneously occurring at these vents and the core metabolic reactions found in these single-celled organisms. 

Thesel vents may hold the secret to the origin of life on Earth.
Image credit: Meteored

Cyanobacteria are an ancient group of photosynthetic microbes which represent one of the earliest forms of life on Earth. With fossils dating back to 2000 – 3500 million years ago, these single-celled organisms evolved photosynthesis, allowing life to rise up from the darkness below.  

The rest is history. 

Since their discovery, hydrothermal vents have become the most popular theory among scientists for explaining the origins of life on Earth. Yet much remains to be discovered. Secrets still held within these mysterious ecosystems have the potential to revise our life-on-Earth theories once again. 


Cover image via Research Feature.

What can Antarctic ice cores tell us about the history of our climate? 

Subscribe

Monthly: Impact in your inbox.

OceanGeneration-Join

Interesting animals that use bioluminescence in the deep Ocean.  

Interesting animals that use bioluminescence in the Ocean.

Bioluminescence: Lighting up a lightless world. 

While bioluminescence is everywhere throughout our Ocean, it’s the only source of light in the deep-sea

A staggering 76% of all Oceanic marine animals are capable of bioluminescence, which means that they can produce their own light through chemical reactions inside their body.  

How does bioluminescence work in the deep Ocean 

Bioluminescence is a chemical reaction that occurs when the light-emitting molecule called luciferin reacts with a luciferase enzyme, releasing energy in the form of light. 

Bioluminescence is the only source of light in the deep Ocean.

It’s an active process, meaning it can be turned on/off, as opposed to the passive traits of fluorescence and phosphorescence. 

Some bioluminescent organisms generate their own light. Others take up bioluminescent bacteria from the water column and house it in their light organs in a symbiotic relationship. 

Marine bioluminescence is commonly expressed as blue/green light. This is most likely because these wavelengths travel further distances through the water. They’re more also easily visible in the deep Ocean.   

@oceangeneration

This is how colour gets absorbed as Ocean depth increases. ???? Demonstrated by a sea urchin skeleton. ???? Did you know: Colour is absorbed in ???? rainbow colour order. Red ???? ‘vanishes’ first (as shallow as 5m / 15ft), then orange ????, yellow ????, green ????, blue ???? and violet ???? last (around 60m / 200ft). How incredible! ???? Follow along for Ocean positive stories and science. ???? ????: j.kowitz #OceanGeneration #Ocean #OceanEducation #OneOcean #OceanDecade #OceanLover #OceanConservation #SeaUrchin #Art #OceanScience #Diver #rainbow #nature #science #sea #underwaterphotography

♬ Royalty – Egzod & Maestro Chives & Neoni

In rarer cases, red and yellow bioluminescence have also been observed in marine creatures.  

Why do marine animals emit light at all?   

In the lightless world of the deep Ocean, marine creatures have adapted to use bioluminescence to their advantage:  

1. Deep-sea anglerfish have a specialised lure to attract prey. 

Perhaps the most famous bioluminescent predator is the deep-sea anglerfish.

This ferocious hunter has a large head, incredibly sharp teeth and a long, fishing-rod-like structure that extends out from the top of its head. At the end of this rod is a ball (called the esca) which contains glowing bacteria called Photobacterium. Ringing any bells? You may recognise her from Finding Nemo.

This lure is used to attract curious prey and is also useful for finding a mate in the vast, dark expanse of the deep Ocean. 

2. Vampire squid expel bioluminescent mucus to deter predators. 

When threatened, the vampire squid inverts its body, raising its arms over its head to expose rows of spikes to deter attackers.

And if that’s not deterrent enough, they also eject a sticky, bioluminescent mucus which can startle, disorient, and confuse predators.

This defensive tactic can buy the squid enough time to escape, while also covering its predator in brightly lit fluid, leaving them vulnerable to attack.  

Why do marine animals emit light in the Ocean?
Image credit: 1. Angler fish: Dante Fenolio/Science Photo Library, 2. Vampire Squid: MBARI, 3. Stoplight Loosejaw: Oceana, 4. Lanternfish: Ocean Twilight Zone

3. Stoplight loosejaw dragonfish have red flashlights to see in the dark. 

Stoplight loosejaw dragonfish have special red-emitting light organs beneath their eyes that can be activated to look for prey.

The stoplight loosejaw is the only known animal to use chlorophyll pigments (usually found in plants) inside its eyes, which allows it to see red wavelengths of light. 

They use these red beams as a flashlight to search for prey. Since most deep-sea fish can only see blue light, these predators have a huge advantage. They can see their prey, but their prey can’t see them.

4. Lanternfish use light to blend in. 

Lanternfish have adapted an ingenious ability to camouflage themselves using light. 

These masters of disguise have rows of photophores (light-emitting organs) on their underside. They emit a faint glow which allows them to blend in with any remaining light that filters down from the surface.

This process is known as counter-illumination and renders them almost invisible to attackers hunting from below.  

Light from bioluminescence 
has the potential to reveal creatures 
that hide in the darkness.  Posted by Ocean Generation.

Some marine animals use counter measures against bioluminescence in the deep Ocean.   

Light from bioluminescence has the potential to reveal the whereabouts of creatures that hide in the darkness of the deep Ocean. 

To counter this, many take measures to disguise themselves or break up their outline. 

Many deep-sea creatures are dark red in colour. Red wavelengths of light are the first to be absorbed in the Ocean, and very few deep-sea creatures can see red light (the stoplight loosejaw being a notable exception). Red-coloured creatures therefore appear black and blend in against the near-lightless backdrop.  

Others have ultra-black skin that can absorb light from bioluminescence. For example, pelican eels are found in the midnight zone (where there’s no sunlight, and life exists in complete, constant darkness). Their skin can absorb up to 99.7% of light, rendering them virtually undetectable, even when exposed to bioluminescence. 

Transparency is another technique used for camouflage in the deep Ocean. The glass squid has been observed as deep as 2,000m, and is almost completely transparent. The only organ visible through the tissue of this small-tentacled, swollen-bodied squid is the red-coloured digestive gland. This makes it difficult to be spotted by even the most astute predator. 

Bioluminescence shines a light on our human mysteries. Posted by Ocean Generation.

Human ingenuity often takes inspiration from nature, and bioluminescence is no exception. 

Due to its unique ability to produce light without the need for an external light source, bioluminescence has been utilised in the field of medical research.

Particularly in imaging and probe techniques for cancer detection and cell culture research, bioluminescence has helped us to detect and respond to disease more effectively.  

With so much of the deep Ocean left to discover, each unique finding may lead to new and exciting medical applications.  

Bioluminescence, therefore, not only lights up the lightless world of the deep Ocean but can also shine a light on our human mysteries too.  

What can Antarctic ice cores tell us about the history of our climate? 

Subscribe

Monthly: Impact in your inbox.

OceanGeneration-Join

What happens after a whale dies? Life after death in the deep-sea

A whale's death is called a whale fall. Posted by Ocean Generation.

A dead whale descends into the darkness of the deep-sea abyss.

In life, these majestic creatures travel vast distances playing an important role in surface ecology. But even in death, their decaying remains become a haven of life on the black Ocean floor.

Here in the deep Ocean the environment is sparse, offering fewer resources to sustain life. What falls from above, marine snow, is the steady trickle of dead organic material and supports an array of life on the seabed. 

A dead whale is a 30-tonne avalanche of fat and organic carbon, equivalent to more than 1000 years’ worth of marine snow across 100 square meters. 

A whale's death becomes an island of biodiversity in the deep Ocean.

Eventually, a whale fall (a whale’s death) becomes an island of biodiversity in the deep-Ocean.

1. It all starts with a feeding frenzy. 

Soon after the whale falls, a variety of species descend upon it and the dinner party begins.

The first to arrive are the large Ocean wanderers such as hagfish (eel-shaped jawless fish) or gigantic sleeper sharks. These mobile scavengers remove soft tissue by rasping or tearing at the flesh exposing the energy-rich skeleton, giving the name of this phase the mobile-scavenger stage.

2. As the pieces get smaller so do the scavengers. 

It can take up to two years for the mobile-scavengers to finish feeding on the whale, where the next wave of guests arrives in a second phase known as the enrichment-opportunist stage.

Animals like polychaetes (a class of marine worms) and crustaceans including amphipods (shrimp-like crustacea) will move in to feed on remaining blubber and burrow into the nutrient enriched sediments surrounding the whale.  

The remains of a whale mean life to many deep-sea animals.
Image credit: National Marine Sanctuary. Photo: OET/NOAA

3. Finally, only the bones of the whale remain.

These would seemingly have no further use. However, ecological diversity is about to flourish in the sulfophilic stage of the whale fall. The whale’s bones provide a large reservoir of energy-rich lipids, a shining prize to deep-sea organisms. 

Bacteria break down fatty lipids in the bones, releasing sulphides. The sulphides can be used to generate energy, in a process called chemosynthesis (producing food using chemicals as an energy source instead of sunlight).

These chemosynthetic bacteria have become resistant to sulphides’ toxicity and can establish bacterial mats which act as a foundational food source, supporting a huge array of marine biodiversity: sponges, mussels, limpets, sea spiders and snails.

The breakdown of bone-lipids can take 50-100 years and these mini-ecosystems are highly significant for seabed ecology. Even then, after the complete extraction of nutrients, it isn’t over.  

Decades after a whale dies, it's still essential to marine ecosystems.

Decades after a whale dies, the whale-fall is still essential to marine ecosystems:  

Some scientists believe there’s a further stage of succession: the reef stage. Even after the feeding frenzy, the whales’ bones can remain for more than 100 years, acting as hard surface for suspension feeders to settle.

These ‘habitat islands’ act as evolutionary stepping stones between other seafloor ecosystems like hydrothermal vents. This may have allowed sulphide-specialised organisms to spread across the seafloor and diverge into new species. 

What happens after a whale dies? There's extraordinary life.
The remains of a whale fall near the Davidson Seamount in Monterey Bay National Marine Sanctuary. Photo: OET/NOAA

Despite whale-fall ecosystems being poorly sampled, 407 species have been found living off the carcasses globally, which is high for the bottom of the sea. Of these, 21 species can only be found on whale-fall, known as whale-fall specialists.

Whale-fall specialists are species that require a whale carcass to complete their lifecycle and maintain their populations. These marine organisms will jump from habitat island to island to survive.

For example, Osedax, Latin for “bone-eater”, are a genus of polychaetes (marine worms) found worldwide.  They are important ecosystem engineers by eroding whale bones and allowing rarer species to colonise the whale skeleton.  

How whale populations impact the global Ocean? 

Whale-falls also contribute to the conversion of inorganic carbon (CO2) into organic carbon (marine life), a set of processes known as the Biological Carbon Pump (BCP). This carbon is sequestered (stored) in the deep Ocean.  

What happens after a whale dies? Posted by Ocean Generation.
Illustration by J Yang

Whales deliver huge amounts of carbon in their biomass to the seafloor, which is then locked-away for centuries within deep-sea sediments.

Any threat to whale populations will threaten entire ecosystems and disrupt the process of carbon sequestration.

Commercial whaling, for example, has been depleting whale populations for around 1000 years, beginning in 1000CE. Experts agree that tens of millions of whales were likely killed during this period, pushing many whale species to extinction and causing the extinction of whale-fall specialist species, who rely on whale falls for survival.

A single whale-fall can provide everything a whale-fall specialist needs for 50-100 years, meaning there is a lag-time of at least 30-40 years before the decline in whale populations is felt. Which is to say, if whale populations can recover, we may be able to mitigate the impacts on deep-sea ecosystems

Whales make an incredible contribution to our Ocean.

As we follow the timeline of a whale’s life, we can see the incredible contribution whales make to the Ocean.

From enhancing surface ecology in life, to supporting entire ecosystems in death. 

What can Antarctic ice cores tell us about the history of our climate? 

Subscribe

Monthly: Impact in your inbox.

OceanGeneration-Join

Facts about Vaquitas: The most endangered marine mammal

10 interesting facts about the vaquita: The most endangered marine mammal in the world, shared by Ocean Generation and Barry M. Illustration: Chris Clayton

How many of these facts about vaquitas do you know?

The vaquita (Phocoena sinus) is the smallest porpoise to call our Ocean home.

In 2023, the best-known estimate of vaquita populations is between 6 – 19, making them the most endangered marine mammal in the world.

1. When was the vaquita discovered? 1958.

The vaquita was was only discovered in 1958 – yet it’s already on the brink of extinction.

Scientists first described these little porpoises after coming across three skulls found in the Gulf of California, Mexico.

2. Vaquitas are endemic to the Gulf of California, Mexico.

Vaquitas display no migratory behaviour and have limited themselves to the Northern part of the Gulf of California, as depicted in the figure below.

Where are vaquitas found? Map showing the Gulf of California, Mexico and the very limited area, in the Northern part of the Gulf of California, where vaquitas live.

3. How big do vaquitas get?

They grow up to 1.5m long (5 feet). Vaquitas live in relatively shallow waters (<50m) and have been observed individually, in pairs, and small groups of up to 8-10 individuals.

4. No one really knew what vaquitas looked like until the late 1980s.

Locals, along the Gulf of California, didn’t know much about vaquitas before they were described, based on their skulls in 1958, but anecdotal evidence from locals include references to “vaquita”(meaning little cow), “cochito”(meaning little pig) and “duende”(meaning ghost or spirit).

There’s a chance that these names could have been referring to totally different species.
In the late 1980s though, external features of vaquitas started to be described.

5. So, what do vaquitas look like?

A dark ring around the eyes is the vaquitas most striking feature, along with a proportionally large dorsal fin. They’re unique among porpoises because they’re the only species of the porpoise family found in warm waters.

6. When did the vaquita become endangered?

In 1978, the IUCN red-listed the vaquita as ‘Vulnerable.’ In 1990, vaquitas became ‘Endangered’ and, in 1996, ‘Critically Endangered.’

7. Why are vaquitas endangered?

The main reason vaquitas are endangered is due to entanglement in gillnets with bycatch in legal and illegal fisheries for shrimp and finfish, and in the last decade, specifically for totoaba.

A gillnet is a wall or curtain of netting that hangs in the water.
A gillnet is a wall or curtain of netting that hangs in the water. Image source.

8. How many vaquitas are left?

In 2007, there were an estimated 150 vaquitas in our Ocean but by 2018, that number had dropped to 19.

A table showing vaquita populations over time, from around 245 vaquitas in 2008 to less than 19 in 2019. There are less than 20 vaquitas in the world.
Vaquita population size over time [Extracted from  Würsig B. et. al., 2021]

9. Is there hope for vaquita populations?

Conservation efforts for vaquitas are underway.

Gillnet fishing – has been banned – however, illegal fishing of totoaba (an endemic fish) continues. The totoaba is also critically endangered too so, the fate of the totoaba and vaquita are closely linked.

There is always hope.

Scientists suggested imminent vaquita extinction in the mid-2000’s but as of 2023, there are still between 6-19 vaquitas alive.

One study on genetics found that due to low population size and low genetic diversity, if gillnet fishing was 100% stopped, there is only a 6% chance of extinction of vaquitas.

This is possibly the first photo published of a vaquita in nature, on a rather placid sea, taken on 10 March 1979. Photo by R.S. Wells, shared by Ocean Generation.
This is possibly the first photo published of a vaquita in nature, on a rather placid sea, taken on 10 March 1979. Photo by R.S. Wells. 

10. The vaquita can give birth annually.

And multiple newborns were sighted in 2019.


A note from Ocean Generation:
Your support may feel like a drop in the Ocean, but the Ocean would be less without that drop.

We’re known for translating complex Ocean science into engaging content and bringing the Ocean to young people across the world. As a charity, every donation is vital and will directly support our environmental youth programmes that drive social action to safeguard our Ocean.

What can Antarctic ice cores tell us about the history of our climate? 

Subscribe

Monthly: Impact in your inbox.

OceanGeneration-Join