Balancing conservation and community in polar wildlife conflicts 

Balancing community and conservation in polar wildlife conflicts

Addressing human-wildlife conflict is essential for both wildlife conservation and human well-being. 

As human populations expand into natural habitats, finding solutions that promote coexistence between people and wildlife becomes increasingly important. By fostering harmony, we can support thriving species, healthy ecosystems, and positive relationships between local communities and conservation efforts.

Reducing conflicts benefits wildlife and eases financial losses for local communities. It also aligns with the UN’s Sustainable Development Goals by enhancing livelihoods, building community resilience, and creating economic opportunities for local populations. 

Mitigating human-wildlife conflict on land 

Climate change intensifies human-wildlife conflict by changing the historical range and behaviour of wild species, increasing the frequency of interactions between humans and wildlife.

Climate change intensifies human-wildlife conflict. Posted by Ocean Generation, leaders in Ocean education.

While addressing climate change is key to reducing these conflicts, communities can adopt strategies to minimise interactions with conflicting species. Some of these approaches are listed below: 

  • Fencing key resources, such as livestock, and securing protected areas. Planting buffer crops could also reduce wildlife consuming important resources.  
  • Implementing animal-safe food storage facilities and improving waste management systems can prevent wildlife from being attracted to human food sources. 
  • Integrating guarding measures, such as specialised livestock-guarding dogs or patrol officers, into resource protection could provide early warning signs to alert residents to potential conflicting wildlife. 
  • The use of non-lethal deterrents, such as visual, chemical, and acoustic repellents, can further discourage wildlife from approaching human settlements and resources.  
  • Economic costs of conflicts could also be reduced through compensation schemes, alternative income generation, or increasing wildlife-related tourism. 

A better understanding of animal movement can help predict high-risk areas and times, allowing for more targeted mitigation efforts. For example, researchers studying moose found that the risk of vehicle collisions increases in winter when snow depth is below 120 cm and nighttime traffic is higher due to longer nights.

This highlights the need for seasonally adaptive strategies to mitigate such risks.  

Mitigating human-wildlife conflict in the Ocean

Fishers have several options to minimise encounters with marine mammals.

Ocean mammals often become entangled in fishing lines

Mammals often collide with or become entangled in vertical lines attached to buoys, which mark where nets have been set. To prevent wildlife harm and gear damage, fishers could reduce the number of vertical lines in the water column or use ropes in colours more visible to mammals.

Common rope colors like yellow, green, or blue may be difficult for whales to detect. Switching to colours such as white, black, or striped patterns could make the ropes more visible to whales, potentially helping them avoid entanglement.

Another approach involves weakening lines so that entangled animals can break free more easily. However, this solution can result in financial losses due to reduced catch and replacing lost gear. 

Technological innovations, such as acoustic buoy releases that surface only when triggered, could eliminate the need for vertical lines. Another potential solution is the use of pingers, which are devices placed on lines that emit noises at specific frequencies to warn whales and other marine mammals away from boats and fishing gear.

Fisheries-have-several-options-to-minimise-encounters-with-marine-animals

While these strategies could help reduce human-wildlife conflict in fisheries, more testing is needed to see how effective they are. Supportive initiatives, like financial compensation programs to cover losses from wildlife, can ease the economic strain on fishers and encourage the use of non-lethal deterrents. 

Collaboration between scientists and communities is key to solving these challenges. For example, the Alaska Longline Fishermen’s Association partnered with biologists and bioacoustic experts in 2003 to study whale behaviour and minimise interactions with longline boats. This led to the creation of the Southeast Alaska Whale Avoidance Project (SEASWAP), a successful project improving our understanding of depredation.  

Balancing conservation and community needs 

The key to addressing human-wildlife conflict involves recognising and valuing the diverse attitudes towards conservation that influence both the conflict and resolution.

By appreciating the different perspectives of stakeholders, conservation plans can be designed to address the needs and interests of everyone involved. Engaging meaningfully with communities is key to developing policies that are not only effective but also widely supported. 

Balancing conservation and community to mitigate polar wildlife conflicts, posted by Ocean generation

What can Antarctic ice cores tell us about the history of our climate? 

Subscribe

Monthly: Impact in your inbox.

OceanGeneration-Join

Bearly coexisting: Human-wildlife conflict in the polar regions 

Human-wildlife conflict in the polar regions: Explained by Ocean Generation

As human populations grow, we’re getting closer to natural habitats, leading to increased interactions with wildlife.

Conflict arises when wildlife presence poses real or perceived costs to human interests or needs, like loss of livestock, crop raiding or attacks on humans. 

Human-wildlife conflict can have negative impacts on wildlife and can also affect community dynamics, commodity production, and sustainable development.

Conservation biologists are increasingly concerned about human-wildlife conflict in the polar regions – the Arctic in the Northern Hemisphere and Antarctic in the Southern Hemisphere.  

Why is human-wildlife conflict increasing in the polar regions

The polar regions are characterised by low temperatures, extreme seasonality, and the seasonal advance and retreat of sea ice. Both polar regions are home to numerous endemic species, but their survival is threatened by climate change, fishing, tourism, invasive species, and pollution.

Experts are concerned about human-wildlife conflict in the polar regions. Posted by Ocean Generation.

These pressures often lead to more frequent encounters between people and wildlife, especially in the Arctic where around 4 million people live.  

A recent study on protecting Antarctic biodiversity found that current conservation efforts are insufficient. It’s predicted that around 65% of land animals and land-associated seabirds could decline by 2100 if global greenhouse gas emissions continue on their >2°C trajectory.  The study suggests several ways to boost conservation efforts, such as: 

  • Improving the quality of land that has been polluted or negatively impacted by human use 
  • Managing infrastructure
  • Protecting areas 
  • Controlling non-native species and diseases 

How does human-wildlife conflict appear in the polar regions? 

Encounters between people and polar bears

Polar bears are an iconic Arctic species, distributed across 19 subpopulations within five countries: the United States, Canada, Greenland, Norway, and Russia. They rely on sea ice for hunting (primarily seals), breeding, and resting. 

With climate change accelerating and sea ice diminishing, polar bears are forced to spend more time on land. Here finding natural food sources becomes challenging, so they often seek out human settlements for a predictable source of nutrition.

The town of Churchill, Manitoba, Canada, is famously known as the ‘polar bear capital of the world’ due to the Western Hudson Bay population that pass through the town each summer and autumn. 

Polar bears often seek out human settlements for food

Between the 1940s and 1980s, these bears regularly visited a waste disposal site, feeding on scraps that caused property damage, human injuries, and malnutrition for the bears. The food waste was often insufficient in fat and contaminated with plastics, metals, and wood. 

Efforts to manage the problem included better waste management, relocating bears, temporarily housing them at a holding facility until Hudson Bay froze, or, in some cases, lethal removal. 

The Government of Manitoba has since closed the dump site and established the Polar Bear Alert Program to minimise the need for lethal measures and reduce conflicts with bears.

As polar bear encounters become more frequent, the significance of this program is expected to grow.

How orcas and Arctic foxes hunting impact communities

Sometimes predators feed on animals of economic and ecological importance to people. These are depredation events (events that cause damage or destruction). 

Depredation events often happen in the polar regions. Posted by Ocean Generation

Mammals in the Arctic Ocean are increasingly observed preying on fish caught by commercial and recreational fishing boats. Longline fishing, which involves the use of baited hooks on a long line, is currently the most severely affected by depredation across both hemispheres, primarily by toothed whales, such as orcas and sperm whales.

These depredation events can result in financial losses for fishers who face difficulties due to reduced catch and often face costs for repairing damaged fishing gear. These interactions can also harm wildlife through injuries or fatalities caused by entanglement with fishing gear and responses from fishers.

Orcas, otherwise known as killer whales, are frequently involved in depredation events in polar regions. It’s been suggested that their group hunting behaviour enables orcas to effectively remove fish from longlines.  

These animals are highly social and live in tightly knit family groups, known as pods. Research suggests that pods which overlap geographically can communicate and share information. It’s thought that this cultural transmission is causing depredation behaviour to spread throughout western Alaska.  

Depredation on land is also a concern, particularly with Arctic foxes preying on reindeer calves 

In the Yamal Peninsula, traditional reindeer herding practices are central to the lives of the indigenous Nenet people of Arctic Russia. However, reindeer mortality has increased due to factors such as pasture icing (explained later), disease outbreaks, and predation by Arctic foxes.

Arctic foxes prey on reindeer calves in Arctic Russia

The population growth of arctic foxes has been fueled by the collapse of the fur trade in the 1990s, which reduced hunting pressure. Industrial expansion also provided waste for foxes to feed on, further supporting their population increase. 

Climate change worsens the issue by causing abnormal weather conditions, such as freezing rain and rapid temperature fluctuations, which lead to pasture icing. This occurs when a thick layer of ice forms over grazing land, trapping vegetation and making it inaccessible to livestock and wildlife. As a result, weakened reindeer become easier prey for foxes, while more carcasses are left for scavenging.

Finding solutions for people and wildlife 

Human-wildlife conflict in the polar regions presents challenges, especially with the added pressures of climate change and other stressors.

However, finding solutions that harmonise conservation goals with community needs can lead to positive outcomes for both people and wildlife. Check out our article on Balancing Conservation and Community in Polar Wildlife Conflicts for strategies to effectively manage and resolve human-wildlife conflict. 

What can Antarctic ice cores tell us about the history of our climate? 

Subscribe

Monthly: Impact in your inbox.

OceanGeneration-Join

Why does the climate change?

Why does the climate change? Explained by Ocean Generation.

The Earth’s climate has changed naturally for billions of years, but human emissions are rewriting the story.  

Scientists know that the Earth’s climate has always changed by itself, even before humans existed.  

The climate changed in a pattern for the past 800,000 years. Every 100,000 years, the Earth entered a warm period, called an “interglacial”, lasting 15,000-20,000 years. Between these periods, ice ages called “glacials” dominated.  

Changes to the climate that caused these glacials and interglacials in the past can be explained by natural forcings. These are forces that act upon Earth’s climate, causing a change in how energy flows through it e.g., greenhouse gases.  

What are some natural forcings? 

1. Milankovitch Cycles 

Milutin Milankovitch, a mathematician, discovered three “Milankovitch” cycles.  

Over the past 800,000 years, these were the dominant causes of climate variability because they affect the amount of solar heat that can reach the Earth’s surface.

Eccentricity occurs every 100,000 years, corresponding with interglacials. Sometimes Earth’s elliptical orbit is more circular, which keeps the Earth at an equal distance from the Sun. When the orbit is more elliptical, Earth’s distance from the Sun changes. When Earth is closer, the climate is warmer. 

Obliquity, Earth’s axial tilt, changes between 22.1° to 24.5° every 41,000 years. Larger angles cause warmer summers and colder winters.   

Every 19,000 – 24,000 years, Precession impacts seasonal contrasts between the hemispheres and the timing of seasons. The Earth wobbles on its axis due to the gravitational pull of the Sun and moon, changing where the North Pole points.  

Milankovitch cycles are long term changes that affect the climate
Design by Grace Cardwell

2. Sunspots  

Every 11 years, the Sun gets spots when its magnetic field increases. The temperature is lowered in this area, influencing the amount of solar radiation warming Earth.

3. Changes in Ocean currents

Ocean currents carry heat around the Earth. When the Ocean absorbs more heat from the atmosphere, sea surface temperatures increase, and Ocean circulation patterns change. Different areas become colder or warmer. 

Because the Ocean stores a lot of heat, small changes can have massive effects on the global climate. A warmer Ocean can’t absorb as much carbon dioxide (CO2) and will evaporate more water vapour. Both contribute to the greenhouse effect and global warming.  

4. Volcanic eruptions

Volcanoes spew out sulphur dioxide and ash, which blocks solar radiation and cools the atmosphere. CO2 released in the eruption eventually overpowers this to increase temperatures, but this is only equivalent to 1% of human emissions.  

5. Meteorite and Asteroid impacts

66 million years ago, an asteroid hit the Earth on Mexico’s Yucatán Peninsula. Scientists call this the Chicxulub Impact, and it drove the extinction that killed 60% of all species, including all non-flying dinosaurs.

Lots of sulphur, soot and dust entered the atmosphere, blocking out the Sun. Temperatures plummeted 15°C, causing a 15-year winter.   

Natural forcings explained by Ocean Generation.

Some climate change and emissions are unavoidable

But natural forcings are too gradual or irregular to cause current climate change.  

The Intergovernmental Panel on Climate Change (IPCC) states “the observed widespread warming of the atmosphere and Ocean, together with ice mass loss, support the conclusion that it is extremely unlikely that global climate change of the past fifty years can be explained without external forcing, and very likely that it is not due to known natural causes alone”.   

Just right or too hot? 

Greenhouse gases are natural, to an extent.  

Some solar radiation passes through the atmosphere, hitting the Earth. Most of this is reflected into space, but some is absorbed by greenhouse gases and re-directed back to Earth.

This keeps Earth just right (Earth is called the “Goldilocks” planet!).

People are emitting too many greenhouse gases, too quickly. Therefore, more heat is trapped in the atmosphere, leading to global warming.  

Greenhouse effect explained: normal and rampant CO2
Credit: National Park Service

How are people causing climate change? 

External forcings” are things we’re doing that release extra greenhouse gases.

1. Power  

We burn fossil fuels like coal, oil and gas to make electricity and heat. This releases carbon dioxide and nitrous oxide to the atmosphere. Half of this electricity powers our buildings.

Globally, only about ¼ of our electricity comes from wind, solar and other renewable sources.  

Some people use more power than others: the richest 1% of the global population combined account for more greenhouse gases than the poorest 50%.

2. Food and Manufacturing  

To make goods like steel and plastic, fossil fuels are burnt to power factory machines and many other processes. Manufacturing is one of the largest contributors to greenhouse gas emissions worldwide.

Food production emits greenhouse gases at various stages. Livestock and rice farming releases methane, fertilisers release nitrous oxides, and carbon dioxide is released to make packaging and transport the food.  

How are people causing climate change: Explained by Ocean Generation.

3. Deforestation

In places like the Amazon Rainforest, trees are cut down to make space for farming and houses. From 2003 – 2023, 54.2 million hectares of rainforest was lost there.

When trees are cut down, they release locked up carbon. With fewer trees, less CO2 absorption can take place. Land use changes make up ¼ of greenhouse gas emissions.

4. Transport  

Cars, ships and planes all burn fossil fuels such as petrol. This makes up ¼ of global energy-related CO2 emissions. This graph shows our impact on the atmosphere: 

This graph shows our impact on the atmosphere.

Don’t put the blame on natural forcings 

Now we know current climate change is down to us; everyone has a responsibility to reduce their emissions. Have a look and see what you can do!  

What can Antarctic ice cores tell us about the history of our climate? 

Subscribe

Monthly: Impact in your inbox.

OceanGeneration-Join

What can Antarctic ice cores tell us about the history of our climate? 

What can Antarctic ice cores tell about the history of climate

Ice cores are the key to the ancient climate and can help us unlock the mysteries of the future 

Scientists can drill into ice sheets to obtain a cylinder of ice, called an ice core.

Ice cores are “time capsules” of the climate. Over time, annual and seasonal snow with different chemical compositions, particulates (like dust), and bubbles of air are compressed into ice.  

What-can-Antarctic-ice-cores-tell-about-the-climate
Credit: Bradley R. Markle via Eos

Scientists are asking the core questions 

One of Antarctica’s ice cores, Dome Concordia, shows the climate record for the past 800,000 years through the Quaternary period (2.58 million years ago – present).  

Annual temperatures are estimated using oxygen’s heavy (O18) and light (O16) varieties, called isotopes. When atmospheric temperatures increase, more energy is available to evaporate water containing more O18 from the Ocean. This water is precipitated in Antarctica and turns to ice. Scientists can relate the isotopic ratio in an ice layer to the temperature.

Trapped air is analysed for which/how much atmospheric greenhouse gases were present annually. Scientists can estimate carbon dioxide (CO2) and methane (CH4) to determine the degree of global warming. 

Using this data and more, scientists can piece together past climates.  

Ice cores are key to ancient climate: Explained by Ocean Generation.

What’s the story, ice cores?

Ice cores tell us that the climate swings between stable bounds of warm interglacials happening every 100,000 years which last 15,000 – 20,000 years, and cold glacials (ice ages).

Ice cores show these key events:   

1. 800,000 years ago in the Pleistocene, ice cores show an interglacial Earth. The glacial-interglacial pattern continued from here… 

2. 430,000 years ago, the Mid-Brunhes Event marked the sudden increase in the temperature range of climate cycles.

3. The penultimate deglaciation event, seen in Antarctic ice cores extends from 132,000 -117,000 years ago.

4. From 24,000 – 17,000 years ago, the Earth was glacial, with temperatures 20°C below pre-industrial levels.

5. Deglaciation began 16,900 years ago, punctuated with tiny ice ages, called the “Bøllering-Allerød” and “Younger Dryas”, thanks to the “bi-polar seesaw” (the Northern Hemisphere cools whilst the Southern Hemisphere warms and vice versa).  

6. 15,000 years ago, ice sheets began to shrink. This heating continued into the Holocene (the official period of geological time which we currently live in)  

7. This interglacial’s temperature peaked between 14,500 and 14,000 years ago

What ice cores tell us about ancient climate.

8. From 13,800 – 12,500 years ago, Antarctica experienced a Cold Reversal, where temperatures plummeted.  

9. The Holocene interglacial began 11,000 years ago, with temperatures fluctuating between warm and cold again.  

10. 1,000 years ago, the Medieval Warm Period allowed crops to flourish, cities to rise, and populations to more than double. 

11. The Little Ice Age, from the 14th-19th centuries, caused Viking colonies in Greenland to fail.  

12. 1750 – the Industrial Revolution began. Ignorant to environmental consequences, humans started emitting greenhouse gases.  

13. Scientists mark 1800 as initiating the Anthropocene, an unofficial epoch where humans effect the climate more than natural forcings.

14. Humans have continued global warming at an unprecedented rate. Summer 2024 was the world’s warmest on record. August was the 13th in a 14-month period where global average temperatures exceeded 1.5°C above pre-industrial levels.

Is the past a mirror of the future? 

Levels of greenhouse gases are higher than in the past 800,000 years, with average CO2 at 419.3ppm as of 2023.  

Paleoclimatology records like ice cores and marine sediments help scientists to understand past climates and estimate future climates. They can compare different emission scenarios with the past to see how future climates may respond. 

The Intergovernmental Panel on Climate Change (IPCC) have estimated several trajectories.

The aggressive mitigation scenario expects CO2 concentrations to remain at Pliocene-like concentrations (>350ppm) until 2350. It will still take 100s -1000s of years for concentrations to return to pre-industrial levels.

Under a middle-of-the-road scenario, CO2 peaks at 550ppm, remaining above Pliocene levels for 30,000 years.  

If CO2 reaches 1000ppm, the worst-case scenario suggests concentrations will remain at Mid-Cretaceous levels for 5000 years, Eocene levels for 10,000 years, and Pliocene levels for 300,000 years. It will take 20,000 human generations for CO2 to return to pre-industrial levels.  

Are past climates mirror of future events?
Credit: International Geographical Union

Scientists and governments can then prepare for the extreme consequences of climate change and make net-zero emission targets.

Although the Earth has recovered in the past, the future is uncertain. What will happen to our Ocean and our species? We all have opportunities to ensure a “best-case scenario”.

Antarctic ice cores unlock the past, our actions will unlock the future.  

What can Antarctic ice cores tell us about the history of our climate? 

Subscribe

Monthly: Impact in your inbox.

OceanGeneration-Join

Why the Arctic is the fastest warming region on the planet

The changing Ocean climate: Why the Arctic is the fastest warming region

A polar biome brimming with glaciers, permafrost, and sea ice. Home to countless species, but for how much longer?  

The Arctic is extremely sensitive to environmental changes. The increase in global mean air temperature is linked to the excessive melting of Arctic sea ice: one of the most unambiguous indicators of climate change. Since 1978, the yearly minimum Arctic sea ice extent has decreased by ~40%.

Global warming is rapidly taking place due to our greenhouse gas (like carbon dioxide (CO2)) emissions. Our current emission rates of ~40 Gt CO2/year could leave the Arctic ice-free by 2050.  

Our Ocean also plays a role in climate change.  

Barents Sea is the hotspot of global warming: Explained by Ocean Generation

“The hotspot of global warming” – not the nickname you want! 

Unfortunately, this is the nickname the Arctic’s Barents Sea is bestowed. Atlantification (the process by which the warming climate alters the marine ecosystem towards a more temperate (milder) state) is to blame.  

Scientists (though they’re still not 100% sure of all processes involved) have noticed drastic changes in our Ocean where Arctic and Atlantic conditions collide.

Arctic water is colder and less salty than Atlantic water. Thawing ice releases freezing freshwater into the Ocean, keeping Arctic water buoyant. Atlantic water, being warmer and more saline, should sink beneath Arctic water, creating a salinity gradient called a halocline.  

The halocline protects ice from thawing by blocking warm water from rising.

However, because atmospheric temperatures are increasing and melting the ice, and less ice is imported into the Barents Sea, freshwater supplies are dwindling. This disrupts the halocline. Surface winds stir up the Ocean, drawing Atlantic heat upwards to melt the ice.

Atlantification 
and the Arctic halocline explained by Ocean Generation.
Design by Grace Cardwell

Throughout the 2000s, the Barents Sea experienced a 1.5°C warming of the upper 60m of its water column, with sea ice thickness decreasing by 0.62m/decade.  

Plenty of fish in the sea – but are they the right ones?  

Birds are indicators of a changing marine ecosystem.  

After hot winters in Kongfsjord (Norway), Black Legged Kittiwake diets shifted in 2007 from Arctic cod to Atlantic capelin and, as of 2013, herring as their main meal. Whilst Kittiwakes seem to have adapted to their new diet, some species aren’t so lucky…  

The most abundant sea bird in the North Atlantic, the Little Auk, should eat Arctic zooplankton.  

The Little Auks decreased in fitness (the ability to survive and reproduce in a competitive environment) due to Atlantic water inflow. Chick growth rate decreased from six to five grams per day when Atlantic water inflow increased between 5-25% in Horsund (Norway).  

Atlantic zooplankton are a suboptimal food source for the Little Auk because they provide less energy than Arctic zooplankton. Because there is less Arctic prey, chick parents spend time and energy foraging for it and might favour their own maintenance over their chicks.  

Birds are indicators of a changing marine ecosystem
Credit: Black Legged Kittiwake by Yathin S Krishnappa, Little Auk by RSPB

Scientists anticipate the Arctic will have the largest species turnover globally, predicting a northward marine fish species migration of 40km/decade. Atlantic species are already outcompeting Arctic species, which could lead to extinction and changes in the food web. 

Could the killer whale overthrow the polar bear, which has reigned as the top Arctic predator for over 200,000 years?  

Feedback. But not the helpful kind…

In 1896, scientist Svante Arrhenius noticed that Arctic temperature changes were higher relative to lower latitudes. This is known as Arctic Amplification and has occurred for over three million years.  

The main driver of this is the albedo effect. This effect is a positive feedback mechanism, where the result of the mechanism causes the mechanism to repeat itself – in a loop. 

Dark objects absorb 93% of the sun’s energy. When the Arctic receives solar radiation in the spring, melting ice, darker areas are exposed amongst the ice which absorb more solar radiation. This reveals the even darker Ocean, repeating the loop.  

Melt seasons are becoming longer as a warming climate leads to an earlier spring melt and exposes darker areas for longer. The Barents Sea’s ice-free season increases by 40 days per decade.  

Where ice has melted, vegetation replaces tundra. Plants are darker than ice, so this furthers the albedo effect. Permafrost also melts, releasing CO2 and methane (which has 84x the warming effect of CO2 in the first 20 years after its release), contributing to the greenhouse effect and exposing darker ground.  

Since 1979, the Arctic has warmed 
nearly four times faster 
than the rest of the globe. Posted by Ocean Generation, leaders in Ocean education.

We are amplifying these positive feedbacks with greenhouse gas emissions. Since 1979, the Arctic has warmed nearly four times faster than the rest of the globe, with the most Arctic Amplification observed in autumn and winter.

Positive feedbacks are taking place very quickly, perhaps too quickly for negative feedbacks (like cloud cover) to balance them. Scientists are uncertain about future trajectories. 

In the past, the Palaeocene-Eocene thermal maximum saw an ice-free Arctic. Is this a mirror of the future?  

What can be done to slow down Arctic warming

Local knowledge aids global governance and monitoring of organisms and landscapes.  

Regional plans like Alaska’s 2017 “Climate Action for Alaska” set targets for reducing emissions.  

Canada’s ArcticNet scheme distributes knowledge for policy development and adaptation strategies, helping Canadians face the challenges and opportunities of socio-economic and climate change.  

The Arctic Council involves international cooperation towards marine and science research. Arctic and non-Arctic states, indigenous representatives and NGOs engage in binding agreements, for example: committing to enhance international Arctic scientific cooperation.  

On a smaller scale, the Arctic Ice Project wants to spread silica beads across the ice to increase reflectivity.  

But it’s clear: further global cooperation is needed. In 2015, The Paris Agreement stated that temperatures shouldn’t rise 2°C above pre-industrial levels, yet global warming is continuing. 

Barents Sea is the hotspot of climate change: Explained by Ocean Generation

What can we do?  

Every tonne of CO2 we emit melts three m2 of Arctic sea ice in the summer.  

To reduce emissions, hold yourself, your country, and the businesses who produce the goods you consume accountable. Walk instead of drive. Switch off lights. Support others fighting for the Arctic.

Don’t just leave it to the scientists. The Arctic isn’t a disappearing, far-away land. Your help, regardless of scale, is necessary for our Ocean to thrive.

What can Antarctic ice cores tell us about the history of our climate? 

Subscribe

Monthly: Impact in your inbox.

OceanGeneration-Join

Green tourism and Thailand’s unexpected wildlife revival

Green tourism and wildlife revival in Thailand. A Wavemaker Story by Ferra, posted by Ocean Generation

Being well into summer, tourism in Thailand is at its very peak again.

It may not be obvious but the beaches that you see today have undergone a significant recovery during the pandemic. Many called it a miracle in disguise. It was a turning point that allowed for a more sustainable path forward to emerge.  

To understand why, let’s go back in time.  

During the pandemic, I took part in a beach clean-up as a high school community service project. When I arrived, I could see that all the beaches were empty, and it was unusual to see them without people as I have always linked the two together.

However, it was peaceful.

There was a lot less litter than I remember from my visit a few years ago, where there was trash every 5 meters along the coast and floating in the sea. I felt relieved for the Ocean and its community – this was probably the first break it had in a long time. 

Ferra, a Wavemaker took part in a beach clean in Thailand
Photo by Ferra, a Wavemaker

In the south of Thailand, numerous sea creatures such as fish, sharks, turtles and dugongs made unexpected appearances.

There were multiple news reports of locals’ observations of sea life, indicating that there has been a promising recovery of the marine ecosystem. I even saw my first shark in the Ocean at Maya Bay in 2023, a clear and unforgettable sign I witnessed firsthand. 

But it wasn’t always like this.  

As often happens, many of the following problems occur because of us, and our impact. 

Pollution can arise from littering, air emissions, noise, or oil and chemicals. The most prominent is litter, ingested by marine animals or accumulating in Ocean gyres. Microplastics are another significant threat which cause toxic chemicals and disrupt food chains.   

In the Mediterranean Sea, marine litter accumulates 4.7 x faster during the high tourist season. This mostly happens due to too much waste, from lack of resources, food waste and unfamiliarity with waste systems. 

Anchoring and other marine activities damage corals and other marine environments such as seagrass beds. Anchors can impact 7.11% of the coral at popular sites every year. This has severe repercussions as corals are one of the slowest growing creatures – massive ones grow merely 0.3 to 2 cm per year.  

Green tourism in Thailand is the responsible way of travelling
Photo by Ferra, a Wavemaker

How did this crisis turn into opportunity?

With the absence of tourists during the lockdown, conservationists seized the opportunity by repairing 30,000 fragments of coral in Maya Bay, Ko Phi Phi Lee; collecting rubbish and cleaning the beach.  

Moving forward, there will be rules such as limiting the number of tourists per day at popular tourist sites such as Maya Bay, Similan islands and Koh Tachai. Additionally, closing off the island at certain points of the year and increasing the strictness of regulations to move towards a sustainable future. 

Sea creatures such as sharks have made reappearances in Thailand.
Photo by Ferra, a Wavemaker

What is green tourism?

Green tourism is a more responsible way of travelling. It means being mindful of the destination’s natural resources and the local community to minimise our environmental impact.

Nowadays, hotels are being more sustainable by eliminating single use amenities and promoting the re-use of products. When travelling, it’s up to us, too, to make a positive impact.

Here are a few tips to be more sustainable when travelling: 

  • Support local businesses & communities 
  • Bring your own refillable water bottle (if there are no refillable stations, I often ask nearby stores/restaurants which may have large containers of water) 
  • Consider traveling during off-peak season 
  • Take public transport, walk or cycle 
  • Stay on path and avoid interacting with wildlife 
  • Avoid collecting seashells and sand 
  • Do your own research on how you can minimise your impact at the destination you plan on visiting 

After seeing the Ocean come back to life, I felt hopeful that we can indeed restore its health

With green tourism, we can reduce our ecological footprint and make sure that the breathtaking destinations will be there for us and future generations to cherish. I believe that the Ocean and people can thrive together, but for that to last, we must appreciate and take care of it.

After seeing the Ocean come back to life in Thailand, Ferra felt hopeful.

Cover photo by Prinn Vajrabhaya


Thank you for raising your voice for the Ocean, Ferra!

Connect with Ferra via LinkedIn. Learn about how to submit your own Wavemaker Story here.

What can Antarctic ice cores tell us about the history of our climate? 

Subscribe

Monthly: Impact in your inbox.

OceanGeneration-Join

The impact of overfishing and what you can do about it

The impact of overfishing and what you can do about it: Explained by Ocean Generation.

Fish is one of the most important food sources on the planet with more than 3.3 billion people relying on it as an important part of their diet.

Fishing is an ancient practice first thought to emerge 40,000 years ago, and for many people, it is central to their culture and way of life.  

However, with our population on the rise and the demand constantly increasing, pressure from commercial fleets is causing fishing to become a problem. 

Fisheries ideally harvest the Maximum Sustainable Yield (MSY), which is the most that can be continually extracted from a population without causing it to decline.

However, more and more of our wild fish stocks are being harvested at a rate faster than the fish populations can naturally regenerate. This is known as overfishing. Advancements in modern technology have exacerbated this by allowing modern fleets to track, target and process huge amounts of seafood.

According to the 2024 FAO report, 37.7% of global fish stocks are fished at unsustainable levels.

However, a recent study of 230 fisheries has revealed that the computer models used to set catch limits often overestimate the size of fish populations. This new research suggests that 85% more fish populations have collapsed than is recognised by the FAO estimate.  

This high level of uncertainty when counting fish stocks poses a greater risk of overfishing and highlights the need for extra precautions to be taken.

37.7 percent of global fish stocks are fished at unsustainable levels. Posted by Ocean Generation.

Fishing in the open Ocean

Countries are allowed to exploit Ocean regions within 200 nautical miles of their coast, called the Economic Exclusion Zone (EEZ). Beyond these areas is what’s known as the high seas: 60% of our Ocean which lies beyond national jurisdiction.

The risk of overfishing is high here, as there’s great difficulty regulating such a huge expanse of Ocean that belongs to no one. 

One of the principles of the high seas is the freedom for any state to have passage and engage in fishing.

However, it’s companies that rule these regions, not countries.  

The combined impact of illegal fishing, and legal fishing that fails to follow scientific advice has led to 65% of straddling (fish that migrate between the high seas and EEZs) and high seas fish stocks to become overfished and for species richness to decline. 

The challenges of regulating the Ocean and fisheries lead to the damage of one of our most important resources.  

Threats such as over-exploitation, destructive fishing methods, and bycatch endanger the health of our Ocean and Ocean biodiversity. Therefore, there’s an immense need for change.  

We need to improve the sustainability of fisheries

How can we make the fishing industry more sustainable?  

Improving the sustainability of fisheries can be done in many ways. Just to name a few: increased regulation on catches and fishing gear, more legislative protection on different areas or cooperation between nations.

One important way is to influence the market and demand sustainability, which can be achieved through consumer action. 

When you step into your local market, opting for sustainable seafood helps to place pressure on suppliers and drives the industry to improve – as it all comes down to consumer demand. 

So, what can I do as a consumer? 

1. Check the certification. 

The Marine Stewardship Council (MSC) completes an assessment of a fishing operator. They look at the sustainability of their fishing, minimisation of environmental impact and how effective their management is.

Sustainable fisheries will be awarded an MSC blue badge, which appears on the packaging of their fish in store. It’s an easy way to identify sustainably caught fish while shopping. The MSC blue label is found on more than 25,000 seafood products all over the world.  

However, it’s worth noting that while the MSC blue badge is the world’s most widely used certification programme for wild fisheries, it’s not without its limitations.  

An independent review by ‘On the Hook’ in 2023 argued that the certification process is insufficient as an indicator of sustainable fishing and doesn’t meet consumer and market expectations.  

Nevertheless, if consumers favour MSC approved seafood whenever possible, this will encourage fisheries to improve their sustainability and meet standards – as it’s currently the best sustainability certification we have. 

Opting for sustainable seafood helps the industry to improve. Posted by Ocean Generation

2. Educate yourself on your options. 

Another way to direct your decision to the most Ocean-friendly option is through education.  

The Marine Conservation Society has a Good Fish Guide, designed to have a traffic light system to represent the environmental impact of your food. It uses scientific advice on the species and how and where it was caught to help inform the consumer on the best possible choice. The guide can be downloaded onto a phone and therefore accessed at any time! 

Similar resources such as  Seafood Watch and GoodFish assess Canadian and U.S markets and Australian markets respectively, who will also help you navigate the most sustainable choices. 

3. Choose your supplier. 

Rather than asking consumers to make the effort, some retailers will make the choice for them, and only stock sustainably produced goods.   

For example, in the UK, M&S has worked with the WWF since 2010, focusing on their supply chains and ensuring traceability and sustainability in their seafood products. Sainsbury’s won both the MSC and ASC (Aquaculture Sustainability Council) awards in 2023, celebrating their achievements in sustainable fishing and responsible aquaculture.

So, if possible, try to consider buying seafood from retailers such as these, as more hassle-free way of making more fish friendly decisions.  

The management of our Ocean resources is vital in allowing them to provide for us in the future. For those who choose to, fish is a favourite, but it will taste much better for having made it to your plate in the most sustainable way, minimising the harm to our Ocean.  

What can I do to make the fishing industry more sustainable: Explained by Ocean Generation

What can Antarctic ice cores tell us about the history of our climate? 

Subscribe

Monthly: Impact in your inbox.

OceanGeneration-Join

How can we protect and restore our coastlines?

Protecting and restoring coastlines starts with us.

Coastlines are the gateway to the Ocean.

Vital ecosystems like mangrove forests, seagrass meadows, coral reefs and tidal marshes exist almost exclusively in coastal regions.  

They support a high biodiversity of life and provide key nursery and breeding areas for migratory species.

They’re also essential to the livelihoods of coastal populations, and we all rely on the important services they provide, such as carbon sequestration and protecting the coast from erosion.

Our coastlines are under threat. 

If you’re wondering which of the five key Ocean threats impact our coastlines, the answer is all of them.

Because coastlines are the boundary between land and sea, our impacts are often amplified in coastal regions due to their proximity to the cause…us.  

With more than one third (2.75 billion) of the world’s population living within 100km of the coast, it’s no surprise that coastal regions are heavily concentrated.

To supply the needs of this ever-growing population, coastal infrastructure development happens through:

  1. Coastal and marine land reclamation, the process by which parts of the Ocean are formed into land. 
  1. Infrastructure development for tourism, such as resorts and recreational facilities.  
  1. Development of ports, harbours, and their management.
Coastal infrastructure development, posted by Ocean Generation.

This is a key driver for habitat destruction (when a natural habitat can no longer support the species present) and biodiversity loss. It also increases the vulnerability of coastal communities to climate change impacts.

With higher frequencies of natural events like cyclones and hurricanes, risk of erosion, saltwater intrusion, flooding and other cascading climate change impacts, coastal regions have never been this vulnerable.

How can we protect and restore our coastlines? 

Enter: Nature Based Solutions (NBS). These are described by the IUCN as:

‘Actions to protect, sustainably use, manage and restore natural or modified ecosystems, which address societal challenges (such as climate change, food and water security) effectively and adaptively, while simultaneously providing human-wellbeing and biodiversity benefits.’ 

In other words, when we protect and restore natural ecosystems, we provide a whole host of benefits to ourselves, too.  

This can be done by restoring degraded ecosystems to their former glory and halting further loss of existing ecosystems.

When we restore natural habitats we protect ourselves too.

Ocean Solution: Habitat restoration.

Habitat restoration is the process of actively repairing and regenerating damaged ecosystems.

Restoring coastal ecosystems such as mangrove forests, coral reefs, oyster beds and seagrass meadows allow us to address environmental challenges (such as biodiversity loss). It reduces risks to vulnerable communities (like flooding, erosion, and freshwater supply). It also contributes to sustainable livelihoods by providing job opportunities.

That’s why at Ocean Generation, we support a mangrove restoration project in Madagascar, led by Eden Reforestation.

In 2022 alone, this project contributed to: 

  • Carbon sequestration and habitat restoration by planting over 4.3 million young mangrove trees.  
  • Creating sustainable livelihoods by employing around 70 people per month at the Maroalika site, with a total of 1,468 working days generated over the year.  

PSA: We plant a mangrove for every new follower on Instagram and newsletter subscriber. Sign up to our newsletter or follow us on our socials to be part of the change today. 

Interest in nature based solutions have surged lately. Posted by Ocean Generation, leaders in Ocean education.

Ocean solution: Marine Protected Areas. 

To halt ecosystem destruction and prevent further habitat loss, we must take measures to protect remaining coastal ecosystems.

One mechanism to achieve this is by implementing Marine Protected Areas (MPAs). These are designated areas of the Ocean established with strict regulations to protect habitats, species and essential processes within them.

If implemented and monitored effectively, Marine Protected Areas can provide a range of benefits across biodiversity conservation, food provisioning and carbon storage

What is the 30 by 30 target? 

In recognition of the importance of healthy and thriving ecosystems, the Global Biodiversity Framework have established a “30×30” target. This calls for the conservation of 30% of the earth’s land and sea through the establishment of protected areas by 2030.

The Global Biodiversity Framework calls for 30 percent of the sea to be protected.

Spoiler alert: We’re not on track to meet this goal.

According to the Marine Protection Atlas (2024), only around 8% of the global Ocean area has been designated or proposed for MPAs, and only 2.9% of the Ocean is in fully or highly protected zones.  

Research also shows that 90% of the top 10% priority areas for biodiversity conservation are contained within coastal zones (within 200-miles of the shore). We must ramp up our efforts to preserve these vital coastal ecosystems and ensure that MPAs continue to benefit both people and planet.

What are the main challenges to implementation? 

Over the past 10 years, interest in the potential of Nature Based Solutions to help meet global climate change and biodiversity goals has surged, as we have begun to truly appreciate the importance of natural ecosystems.  

Despite this knowledge and an abundance of opportunities for implementation worldwide, marine and coastal regions still lack uptake.  

We must address the barriers to implementation to accelerate the rate of success of coastal protection worldwide, including (but not limited to):

  • Conflict of interest between stakeholders i.e. blocking of protective legislation by fishing and other extractive industries.  
  • Marine and coastal ecosystems are ‘out-of-sight, out-of-mind’. This results in a lack of public and policy awareness of their value. As a result, Nature Based Solutions are often overlooked in favour of grey infrastructure such as seawalls.  

Increasing our understanding of the vital services provided by coastal ecosystems is critical to overcoming these barriers. 

The more we appreciate what these incredible ecosystems do for us, the more likely we are to succeed in protecting and restoring our coastlines.  

Restoring coastal ecosystems help address environmental challenges

What can Antarctic ice cores tell us about the history of our climate? 

Subscribe

Monthly: Impact in your inbox.

OceanGeneration-Join

12 interesting coral reef facts

Bright yellow fish next o a coral reef. Shared by Ocean Generation in an article about interesting coral reef facts.

Coral reefs are one of the most indispensable ecosystems on Earth.

What makes corals are so brightly coloured? Why do they turn white when they’re unhealthy? We’ve got you covered. Below, we’re sharing 12+ fascinating facts about coral reefs: The most biologically diverse ecosystem on Earth.

Corals reefs are large skeletons (because they’re made up of tiny animals a.k.a. ‘coral polyps’). They’re home to hundreds of plants and organisms, support fisheries and may host the answers needed to develop new cancer medication. 

How many of these coral reef facts do you know?

Close up of dark blue coral reef in the Ocean. Shared by Ocean Generation: Experts in Ocean health since 2009.

1. Coral reefs occur in more than 100 countries and territories whilst covering only 0.2% of the seafloor. They reside in tropical and semi-tropical waters.  

2. The single-celled algae, zooxanthellae, that live in the tissues of the coral polyps can fuel up to 90% of the reef-building coral’s energy requirements for growth and reproduction. Additionally, zooxanthellae are responsible for the vibrant colours of the corals!  

3. In return, the corals provide them with a home to reside in and nutrients to aid photosynthesis. Thus, fulfilling a mutually beneficial (‘symbiotic’) relationship! 

Colourful coral reef, bursting with life. There's a sea turtle and some orange fish swimming in the Ocean around the reef.

4. A healthy coral reef can limit coastal wave energy by up to 97%. That alone makes corals a crucial shoreline protector, like some other coastal ecosystems.

Coral reefs protect around $6 billion worth of built infrastructure from flooding around the world, from an economic perspective.

5. Large scale losses of coral reefs are due to a warming Ocean and climate change.

Land-based pollution of nutrients and sediments from agriculture, marine pollution, overfishing and destructive fishing practices, and outbreaks of coral diseases and crown-of-thorn starfish (see below image) are all causes of local coral losses. 

Large, purple crown of thorn starfish on the seafloor in the Ocean. These starfish threaten the livelihoods of coral reefs. Facts about corals shared by Ocean Generation.

6. Coral reefs support at least a quarter of all marine species. What’s more: Coral reefs are a home to an average of 830,000 species (550,000 – 1,330,000). The range varies widely due to large populations of small cryptic species being difficult to sample.  

7. Astonishingly, scientists estimate that roughly 74% of coral reef species remain undiscovered! 

8. Ocean acidification is a major threat to coral reefs.

The decrease in pH (making water acidic) hinders corals and other organisms from forming their skeletons. This makes them especially vulnerable in juvenile stages.

The weakening of these skeletons also results in habitat loss, low reef biodiversity, coastline erosion etc. 

9. Coral reefs subjected to higher temperature levels increase the likelihood of abrupt and irreversible changes. According to the IPCC, a record-shattering warming world of 1.5°C would mean a 70-90% decline in coral reefs.  

10. Coral reef associated fisheries provide 70% of protein in the diets of Pacific Islanders. These fisheries support around 6 million people and are worth $6.8 billion annually.  

Coral in the Ocean experiencing coral bleaching. Corals turn white when they're bleached.

11. Corals can turn white due to coral bleaching. Climate change is a major driver of coral bleaching, and this process disrupts the symbiotic relationship with zooxanthellae.  

As the algae is dispelled by the corals in an attempt to protect themselves, the corals vulnerability increases and they lose a major energy source. If the heat stress persists, corals are likely to die.  

Hands near the shoreline of the Ocean holding an unhealthy piece of coral. The coral is bleached white because of climate change. Image shared by Ocean Generation, experts in Ocean health and understandable environmental science.

Over half of the our coral reefs are already lost.

12. Coral restoration is a relatively new nature-based solution. Nature-based solutions refers to an umbrella of methods for reviving ecosystems in the face of adversity. 

A 2020 review stated that coral restoration projects report a survival rate between 60-70% with a report stating that 1.5C warming would render this solution to be ineffective.

The authors of the review noted that most projects are small-scale and that we’ll still require large-scale climate action to tackle the root of this issue. 

With over half of the world’s coral reefs already lost, it is evident that coral reefs are declining due to a multitude of human pressures.  

Some warm water corals have reached adaptation limits. Nevertheless, scientists and local communities are working extremely hard to continuously build on existing solutions and quickly adopt innovative approaches. 

The existential threat of the rise in global temperatures means that climate change action is urgently needed to establish coral reef resilience.  

Act now.

What can Antarctic ice cores tell us about the history of our climate? 

Subscribe

Monthly: Impact in your inbox.

OceanGeneration-Join

How can I tackle a problem as complex as climate change?

A ripple of water. Ocean Generation makes environmental science easy to understand and shares how each individual has a ripple effect on the environment and health of the Ocean.

The Ocean has never been this subjected to the level of intensity of climate change impacts caused by human activities. With every 0.1 degree C of warming, we make it more and more difficult for humans, flora, and fauna to adapt. 

A warming Ocean means that marine ecosystems like coral reefs and salt marshes are less able to host marine biodiversity and sustain many benefits for humans.

This also disrupts the Ocean’s ability to regulate the global climate system, water, and carbon cycle. 

It goes without saying that the climate crisis is now a defining issue of our lifetimes, and we have a slim window of opportunity to reduce our collective impact. 

Four images side by side: Rough blue Ocean waves and foam, a factory releasing carbon emissions behind a field of yellow floowers, a single green lead on a crusty dry piece of Earth, a bright pink and healthy coral in the Ocean. Ocean Generation makes climate science simple to understand.

Is there a way out of the climate crisis? 

The Ocean stores 20-30% of greenhouse gas (GHG) emissions from human activities but this is unsustainable, resulting in an acidic, slow circulating, less oxygenated Ocean.

To put it simply, we need to rapidly reduce our emissions to give young people and future generations a chance to secure a sustainable future.  

According to the latest IPCC report, we need to cut global GHG emissions by nearly half by 2030. These emissions come from electricity production, food, agriculture, land use, industry, transportation etc. Cutting emissions requires global collaboration and cooperation – from governments to individuals.  

The challenge is immense, but the solutions could not be clearer.

A ripple of water. Ocean Generation makes environmental science easy to understand and shares how each individual has a ripple effect on the environment and health of the Ocean.

What do we need to do to limit global warming?  

Some of these solutions have already been set in motion: Reducing our reliance on fossil fuels, increasing uptake of clean energies, restoring carbon sinks, and much more. The slow pace of adoption and funding associated with these solutions have been repeatedly questioned, given the world is currently at 1.1C.  

The effects of climate change are already being felt in different corners of the world, albeit disproportionately.  

In order for us to stay within any warming limit, we need to make the necessary changes needed to sustain humanity as a whole. And as individuals, each and every one of us have carbon footprints attached to our households and lifestyles.  

We must address the fact that
we do not emit emissions equally 

Globally, there are huge disparities between those who over-consume and those who consume less due to socioeconomic and geographic factors.  

In fact, the top 10% of high-income households contribute 34–45% of consumption-based household GHG emissions and the bottom 50% contribute 13–15%.  

These stark differences mean that individuals in the top 50% are the in the best position to reduce their emissions, giving the opportunity to raise living standards for those in the bottom 50%.  

When considering our lifestyles, the conclusions are quite similar. 

What impact do our lifestyle choices have on carbon emissions?  

According to 2022 UNEP report, “the lifestyles of the wealthiest 10% of the world’s population (broadly speaking, most middleclass persons living in industrialised countries), are responsible for almost half of the global emissions, while the lifestyles of the wealthiest 1% are responsible for about twice as many GHG emissions as the poorest 50%”.  

Lifestyles are not just about the things we consume, but also addresses the communities we live in, the values we foster and the choices we make.

Individuals that are socio-economically well-off are in an instrumental position for enabling change. One paper suggests that individuals in this category could reduce emissions as role models, citizens, organisational participants, investors, and consumers.  

Ultimately, environmental, and societal well-being go hand-in-hand; it is in humanity’s best interests to fairly consume within our means.  

Footprint made of sea shells on the sand at a beach. Each of us has carbon footprints attached to our households and lifestyles. We can minimise our impact with every decision we make.

What can people to do to lower their carbon emissions 

There are four key areas where individuals can have the most impact: Food, transport, housing, and the things we buy (like appliances, clothes etc).  

There is no denying that industry supply chains have a responsibility to reduce environmental impacts and provide sustainable choices. Small, and local businesses also tend to be more transparent, gaining consumer trust. Low-carbon alternatives exist in each of the aforementioned areas, and we can collectively vouch for further changes, whether that’s accessibility or affordability.  

At Ocean Generation, we will be covering climate change solutions under each of the above areas through 2023. Namely:

What we Eat food sources, diets, and food waste 
How we Move modes of mobility 
What we Purchase appliances, fashion 
How we Live energy sources and energy-saving behaviours 

Four areas where individuals have agency over their emissions: how we move, how we live, what we purchase and what we eat. Ocean Generation will be covering solutions related to climate change because climate solutions are Ocean solutions. We cannot have a healthy planet without a healthy Ocean.

Climate change solutions are Ocean solutions, and vice versa.

The finite resources on this planet need to be utilised efficiently and distributed equally while minimising our impact with each and every decision we make.  

The future of the Ocean is very much in our own hands.  

With every 0.1C degree warming avoided, biodiversity and humans are given another chance. Let’s make every choice count!  

The future of the Ocean is in our hands. To have a healthy planet, we need a healthy Ocean. Ocean Generation shares climate change solutions and Ocean solutions to safeguard our planet.

What can Antarctic ice cores tell us about the history of our climate? 

Subscribe

Monthly: Impact in your inbox.

OceanGeneration-Join

Our Impact: Understanding the 5 Ocean Threats

The Ocean is a flourishing ecosystem that can maintain itself.

But our actions have been negatively impacting the Ocean for decades, at a rate our Ocean cannot keep up with. 

There was a time when we thought the Ocean was endless. So, we treated it that way: Taking what we wanted, when we wanted, in whatever quantity we liked.  

It took us far too long to realise the many ways we threaten our Ocean. But now we know better.

Our Ocean is one of our planet’s most valuable ecosystems.

The Ocean provides over 50% of the world’s oxygen, captures 30% of human-made carbon emissions, and mitigates the climate crisis. The bottom line: We need a healthy Ocean for a healthy planet. 

What are the 5 key ways human activity impacts the Ocean? Ocean Generation is sharing the human threats our Ocean faces. 5 images side by side represent the threats: a dry landscape for climate change; a plastic bottle in the Ocean for pollution; a dam wall for costal infrastructure; a caught fish for resource extraction; and a cruise ship for daily Ocean use.

How does human activity threaten the Ocean?

Our Impact work explores the 5 key ways human actions negatively impact the Ocean.

Many of the underlying actions causing these Ocean Threats have existed throughout the course of human history – but have become unsustainable more recently because of rapid population growth and the consequent scale of our impact on the marine environment.  

What human activity impacts the Ocean the worst?

There are no known, credible, scientific classification of the severity of these Ocean threats. What does that mean – simply? We can’t tell you which of the five threaten the Ocean the worst.

But there’s no doubt that all of these Ocean threats are inter-related and can combine to have vast negative impacts on Ocean health, marine habitats and marine life which, in turn, pose serious threats to human health.

What are the 5 human-made Ocean threats?

1. Climate change: We can’t talk about climate change without the Ocean

It’s widely accepted that human actions are the primary drivers of climate change. The biggest culprit? Burning fossil fuels (for example, coal, oil and gas) to produce energy is the main cause of climate change.

Signs of climate change are all around us – and impossible to ignore. But too few of us understand the important role our Ocean plays in mitigating the climate crisis.

How does the Ocean mitigate climate change?

Our Ocean plays a fundamental role in regulating global temperatures, storing massive amounts of carbon, and capturing heat from the atmosphere.

Although the Ocean drastically mitigates climate change, it’s also impacted by climate change. These changes (like increased Ocean heat), have negative consequences on Ocean health and thus, all of us.

2. Pollution: It’s not just plastic polluting our Ocean. 

Plastic is, by far, the most common and impacting pollutant in the Ocean.

80% of plastic in our Ocean comes from the land and most of that is made up of single-use plastic items; products we use once, then throw away. And that’s the biggest problem with plastic: there is no “away.”

This Ocean Generation above and below image shows human impact on the Ocean in the top half of the image with an oil spill in the Ocean and in the bottom half, the flourishing Ocean. An array of fish are swimming among bright blue corals.

3. Coastal Infrastructure Development: Why do we need to protect our coastlines?


2.5 billion people live within 100km from our Ocean.

Coastal regions are densely populated areas with increasing rates of population growth (and who can blame them? Living near the Ocean has numerous benefits.)

But rapid urbanisation of our coastlines has negative impacts on the environment – many of which are linked to climate change.

With higher frequencies of natural weather events (like cyclones and hurricanes), erosion and land loss, and flooding, coastal regions have never been this vulnerable.

4. Resource Extraction: What resources do we extract from the Ocean? 

Around 3 billion people rely on the Ocean for their primary source of protein: Seafood.

Seafood is the most notable thing we extract from the Ocean but it’s not the only thing. We also extract minerals, fossil fuels, and plants from the Ocean.

Our Ocean – as incredible as it is – is not limitless.

We must recognise the limits of Ocean resources and control the quantity and frequency at which we extract resources from the Ocean; allowing it time to replenish and regenerate. Otherwise, we will reach a point of no return.

A fisherman, standing knee deep in the Ocean, is holding up a fishing net. It is sunset and only the outline of the fisherman and his hat can be seen against the yellow sky. In this blog, Ocean Generation is sharing the negative impact of resource extraction on the Ocean.

5. Daily Ocean Use: What’s the impact of daily human actions on the Ocean?

Humans work hard and always have something on the go. The Ocean is no different.

All around the world, our Ocean is in use every day. From cargo shipping for trade, passenger traffic for travel to commercial fishing and research – the Ocean is used widely. How we make use of the Ocean is what’s important.

We need to turn to using the Ocean sustainably to protect the awe-inspiring ecosystem that supports all life on Earth. 

What can I do to protect our blue planet?

Understanding the 5 main threats our Ocean faces is step one. Step two is doing something about them. Some of these Ocean Threats can feel overwhelming – but they don’t have to be.

Working together is humanity’s superpower. And it remains our best tool for solving the world’s biggest problems, and simultaneously, restoring our Ocean.

Three ways you can take environmental action – with a focus on the Ocean – right now:

  1. Subscribe to our newsletter to receive monthly impact in your inbox; explore our Science Hub; or visit our Instagram page for bite-size environmental education.

  2. Recognise that you don’t have to be perfect.

    Ask yourself: What can I do right now to decrease my carbon footprint? What can I do to be a voice for our Ocean and empower others to do the same?

  3. 20 actions to reduce and reuse plastic.

Subscribe for simple Ocean Science and pop-culture stories

* indicates required

View previous campaigns.

Ocean Generation will use the information provided here to be in touch with updates and marketing.

You can unsubscribe at any time.

What can Antarctic ice cores tell us about the history of our climate? 

Subscribe

Monthly: Impact in your inbox.

OceanGeneration-Join

Our Impact: The cost of daily Ocean use

This is part of our Four Pillars work that highlights the importance of the Ocean, the human-made threats it faces, and the solutions our Ocean provides.

What is the cost of our daily Ocean activities

What’s there to love about the Ocean 

Many things come to mind: How vast it is, Ocean biodiversity, being able to swim, dive, snorkel, travel and so much more.  

This large body of water helps us stay connected with each other through global trade and passenger routes.

The Ocean also helps us learn about, explore, and enjoy its many offerings through touristic and recreational activities. But this daily Ocean use can also be harmful to the marine environment if we are not careful. 

Recreational boating in the Ocean. In the image, a speedboat cuts across Ocean waves leaving a trail in its wake.

The impacts of tourism on our Ocean  

The issue with “sun, sea, sand” tourism on Ocean biodiversity 

Touristic Ocean activities are mainly experienced through cruising or coastal tourism.

One of the major impacts on the Ocean comes from coastal infrastructure development dedicated to cultivating tourism hotspots: think airports, hotels, or retail shops.  

Effective planning and management are crucial in minimising the impacts on biodiversity. If foregone, the effects are dire: a 15-year unplanned development period at Vlora Bay, Albania resulted in the disappearance of over 50% of seagrass meadows and a huge reduction in macroalgae.  

People enjoying a beach and the blue Ocean waves.

Furthermore, studies continue to show that beaches with extensive tourism are less rich in nutrients and biodiversity, when compared to natural shorelines. This is often the case to appease tourists with what an “ideal” beach might look like.  

Our love for water-based recreational activities impacts marine life 

There is nothing quite like spending some time in the water, whether that may be a pool, a lagoon, a lake, or the mighty Ocean.  

Scuba diving and snorkeling are highly popular activities, and the prime locations are areas with coral reefs.  

Coral reefs  attract large numbers of tourists each year.

Around the world, coral reef tourism is valued at an estimated $36 billion annually.

In terms of visitor numbers, this equates to 70 million tourist trips that would not have happened without the presence of these magnificent reefs.  

Coral reef tourism is valued at $36 billion every year. A scuba diver is reaching out to touch a fish in a coral reef.

Studies have shown that diver interactions can be damaging to the reefs.

This mostly comes down to the risk of breaking or touching the fragile reefs. Better training for the divers and overall management techniques are needed to ensure coral reef tourism is sustainable.  

Other activities that attract visitors include birdwatching, whale watching and recreational boating.

Whale watching is a significant tourist activity, generating about $2.1billion per annum, globally. Millions of people engage in this activity which may benefit conservation efforts through change in attitudes towards marine life and natural environments. Yet, uncontrolled whale watching efforts can disrupt their natural behaviours.  

A whale tail image. The whale's tail is dipping into the Ocean waves.

What are the effects of marine traffic on the Ocean? 

Marine traffic mainly comprises of shipping cargoes and passenger movements. This traffic can impact the Ocean through various forms of pollution (air, water, noise, oil spills) as well as biodiversity losses.  

Passenger traffic has seen an increased interest in cruises – the number of passengers has increased by about 5% per year, with major hotspots being the Caribbean and Mediterranean.  

There is also an increased interest in Antarctic and Arctic tourism. With melting sea ice in the Arctic, new parts of the area open, which is likely to be subjected to more impacts.  

Cruise boat in the Ocean.

New innovations in marine fuels and strict adherence to the codes provided by the International Maritime Organization (IMO) are necessary to limit the environmental impacts caused by marine traffic.  

But what if we just limited the traffic? 

Here is an insightful case study…  

Research Spotlight: What happens when we curb marine traffic? 

Chinese white dolphins are not limited to but can be found in the waters near Hong Kong.

Over the last 17 years, their population has decreased by 80% and one of the main culprits is marine traffic. A recent multi-year study found fascinating changes in behaviour of these mammals when left undisturbed.*

Due to COVID-19, cross border passenger ferries between Hong Kong, Macau and China ceased to operate in early 2020.

In the absence of the fast ferries, the dolphins began to actively use the fairways. Researchers at WWF Hong Kong found that dolphins occurred in larger groups and socialised much more. 

WWF HK is now working with other stakeholders to maintain the area as a ferry-free zone. A survey was conducted to document public support for this initiative and the results show that rerouting ferries when the maritime border reopens is the preferred option, even though this means increased fares and longer travelling times. 

Chinese dolphin in the Ocean. The dolphin is pink in colour.

We need to become responsible Ocean users 

It is clear that we can travel and enjoy everything the Ocean has to offer, provided we understand and limit our impacts when indulging in these activities.  

As we seek solutions to aid sustainable reforms within shipping and cruise ships, learning and appreciating the Ocean and marine life is a great start to being more careful tourists, internationally or domestically.  

We have one Ocean and we need to protect it every day. 

*We would like to thank Dr Lindsay Porter, Senior Research Scientist at SEAMAR Hong Kong SAR for providing these invaluable insights.  

What can Antarctic ice cores tell us about the history of our climate? 

Subscribe

Monthly: Impact in your inbox.

OceanGeneration-Join